Article
Keywords:
Lu Qi-Keng problem; Bergman kernel; Routh-Hurwitz theorem; Jacobi polynomial
Summary:
We investigate the Bergman kernel function for the intersection of two complex ellipsoids $\{(z,w_1,w_2) \in \mathbb {C}^{n+2} \colon |z_1|^2 + \cdots + |z_n|^2 + |w_1|^q < 1, \ |z_1|^2 + \cdots + |z_n|^2 + |w_2|^r < 1\}. $ We also compute the kernel function for $\{(z_1,w_1,w_2) \in \mathbb {C}^3 \colon |z_1|^{2/n} + |w_1|^q < 1, \ |z_1|^{2/n} + |w_2|^r < 1\}$ and show deflation type identity between these two domains. Moreover in the case that $q=r=2$ we express the Bergman kernel in terms of the Jacobi polynomials. The explicit formulas of the Bergman kernel function for these domains enables us to investigate whether the Bergman kernel has zeros or not. This kind of problem is called a Lu Qi-Keng problem.
References:
[2] Bergman, S.:
Zur Theorie von pseudokonformen Abbildungen. Mat. Sb. (N.S.) 1 (1936), 79-96.
Zbl 0014.02603
[5] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.:
Higher Transcendental Functions. Vol. 1, Bateman Manuscript Project, McGraw-Hill, New York (1953).
MR 0698779 |
Zbl 0051.30303
[7] Šiljak, D. D., Stipanović, D. M.:
Stability of interval two-variable polynomials and quasipolynomials via positivity. Positive Polynomials in Control D. Henrion, et al. Lecture Notes in Control and Inform. Sci. 312, Springer, Berlin (2005), 165-177.
DOI 10.1007/10997703_10 |
MR 2123523 |
Zbl 1138.93392