Article
Keywords:
Diophantine equation; factorial
Summary:
We study the Diophantine equations $(k!)^n -k^n = (n!)^k-n^k$ and $(k!)^n +k^n = (n!)^k +n^k,$ where $k$ and $n$ are positive integers. We show that the first one holds if and only if $k=n$ or $(k,n)=(1,2),(2,1)$ and that the second one holds if and only if $k=n$.
References:
[2] Bashmakova, I. G.:
Diophantus and Diophantine Equations. The Dolciani Mathematical Expositions 20. The Mathematical Association of America, Washington (1997).
MR 1483067 |
Zbl 0883.11001
[4] Luca, F.:
The Diophantine equation $R(x)=n!$ and a result of M. Overholt. Glas. Mat. (3) 37 (2002), 269-273.
MR 1951531 |
Zbl 1085.11023
[6] Sándor, J.:
On some Diophantine equations involving the factorial of a number. Seminar Arghiriade. Univ. Timişoara 21 (1989), 4 pages.
MR 1124179 |
Zbl 0759.11011