Previous |  Up |  Next

Article

Keywords:
Frobenius-Perron operator; Fredholm operator; spectrum
Summary:
First, some classic properties of a weighted Frobenius-Perron operator $\mathcal {P}_\varphi ^u$ on $L^1(\Sigma )$ as a predual of weighted Koopman operator $W=uU_\varphi $ on $L^\infty (\Sigma )$ will be investigated using the language of the conditional expectation operator. Also, we determine the spectrum of $\mathcal {P}_\varphi ^u$ under certain conditions.
References:
[1] Rao, K. P. S. Bhaskara, Rao, M. Bhaskara: Theory of Charges: A Study of Finitely Additive Measures. Pure and Applied Mathematics 109, Academic Press, London (1983). MR 0751777 | Zbl 0516.28001
[2] Campbell, J. T., Jamison, J. E.: On some classes of weighted composition operators. Glasg. Math. J. 32 (1990), 87-94 corrigendum on pages 261-263\kern1pt. DOI 10.1017/S0017089500009095 | MR 1045089 | Zbl 0705.47027
[3] Ding, J.: A closed range theorem for the Frobenius-Perron operator and its application to the spectral analysis. J. Math. Anal. Appl. 184 (1994), 156-167. DOI 10.1006/jmaa.1994.1191 | MR 1275951 | Zbl 0804.47032
[4] Ding, J.: The Frobenius-Perron operator as a product of two operators. Appl. Math. Lett. 9 (1996), 63-65. DOI 10.1016/0893-9659(96)00033-X | MR 1386001 | Zbl 0857.47016
[5] Ding, J.: The point spectrum of Frobenius-Perron and Koopman operators. Proc. Am. Math. Soc. 126 (1998), 1355-1361. DOI 10.1090/S0002-9939-98-04188-4 | MR 1443148 | Zbl 0892.47010
[6] Ding, J., Du, Q., Li, T. Y.: The spectral analysis of Frobenius-Perron operators. J. Math. Anal. Appl. 184 (1994), 285-301. DOI 10.1006/jmaa.1994.1200 | MR 1278389 | Zbl 0830.47022
[7] Ding, J., Hornor, W. E.: A new approach to Frobenius-Perron operators. J. Math. Anal. Appl. 187 (1994), 1047-1058. DOI 10.1006/jmaa.1994.1405 | MR 1298836 | Zbl 0819.47043
[8] Ding, J., Zhou, A.: On the spectrum of Frobenius-Perron operators. J. Math. Anal. Appl. 250 (2000), 610-620. DOI 10.1006/jmaa.2000.7003 | MR 1786085 | Zbl 0991.47014
[9] Ding, J., Zhou, A.: Statistical Properties of Deterministic Systems. Tsinghua University Texts. Springer, Berlin; Tsinghua University Press, Beijing (2009). DOI 10.1007/978-3-540-85367-1 | MR 2518822 | Zbl 1171.37001
[10] Jabbarzadeh, M. R.: Weighted Frobenius-Perron and Koopman operators. Bull. Iran. Math. Soc. 35 (2009), 85-96. MR 2642928 | Zbl 1203.47018
[11] Jabbarzadeh, M. R.: A conditional expectation type operator on $L^p$ spaces. Oper. Matrices 4 (2010), 445-453. DOI 10.7153/oam-04-24 | MR 2680958 | Zbl 1217.47068
[12] Jabbarzadeh, M. R., Emamalipour, H.: Compact weighted Frobenius-Perron operators and their spectra. Bull. Iran. Math. Soc. 38 (2012), 817-826. MR 3028472 | Zbl 06283466
[13] Jabbarzadeh, M. R., Bakhshkandi, M. Jafari: Stability constants for weighted composition operators. To appear in Bull. Belg. Math. Soc.-Simon Stevin.
[14] Rao, M. M.: Conditional Measures and Applications. Pure and Applied Mathematics (Boca Raton) 271, Chapman & Hall/CRC, Boca Raton (2005). MR 2149673 | Zbl 1079.60008
[15] Yosida, K.: Functional Analysis. Classics in Mathematics. Vol. 123, Springer, Berlin (1995). DOI 10.1007/978-3-642-61859-8 | MR 1336382 | Zbl 0830.46001
[16] Zaanen, A. C.: Integration. North-Holland, Amsterdam (1967). MR 0222234 | Zbl 0175.05002
Partner of
EuDML logo