[5] Costa, O. L. V., Maiali, A. C., Pinto, A. de C.:
Sampled control for mean-variance hedging in a jump diffusion financial market. IEEE Trans. Automat. Control 55 (2010), 1704-1709.
DOI 10.1109/tac.2010.2046923 |
MR 2675836
[9] Guo, X. P., Song, X. Y.:
Mean-variance criteria for finite continuous-time Markov decision processes. IEEE Trans. Automat. Control 54 (2009), 2151-2157.
DOI 10.1109/tac.2009.2023833 |
MR 2567941
[11] Guo, X. P., Huang, X. X., Zhang, Y.:
On the first passage $g$-mean variance optimality for discounted continuous-time Markov decision processes. SIAM J. Control Optim. 53 (2015), 1406-1424.
DOI 10.1137/140968872 |
MR 3352600 |
Zbl 1322.90108
[18] Huang, Y. H., Guo, X. P.:
Constrained optimality for first passage criteria in semi-Markov decision processes. Optimization, Control, and Applications of Stochastic Systems, pp. 181-202, Systems Control Found. Appl., Birkhäuser/Springer, New York 2012.
DOI 10.1007/978-0-8176-8337-5_11 |
MR 2961386
[22] Kharroubi, I., Lim, T.:
A. Ngoupeyou, Mean-variance hedging on uncertain time horizon in a market with a jump. Appl. Math. Optim. 68 (2013), 413-444.
DOI 10.1007/s00245-013-9213-5 |
MR 3131502
[26] Markowitz, H. M.:
Portfolio Selection: Efficient Diversification of Investments. John Wiley and Sons, Inc., New York 1959.
MR 0103768