[1] Bagewadi, C. S., Ingalahalli, G.:
Ricci solitons in Lorentzian $\alpha $-Sasakian manifolds. Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis 28 (2012), 59–68.
MR 2942704 |
Zbl 1265.53036
[2] Bagewadi, C. S., :, Venkatesha:
Some curvature tensors on a trans-Sasakian manifold. Turk. J. Math. 31 (2007), 111–121.
MR 2335656 |
Zbl 1138.53028
[3] Basu, N., Bhattacharyya, A.:
Conformal Ricci soliton in Kenmotsu manifold. Global Journal of Advanced Research on Classical and Modern Geometries 4 (2015), 15–21.
MR 3343178
[5] Dutta, T., Basu, N., Bhattacharyya, A.:
Some curvature identities on an almost conformal gradient shrinking Ricci soliton. Journal of Dynamical Systems and Geometric Theories 13, 2 (2015), 163–178.
DOI 10.1080/1726037X.2015.1076221 |
MR 3427160
[6] Dutta, T., Basu, N., Bhattacharyya, A.:
Almost conformal Ricci solitons on $3$-dimensional trans-Sasakian manifold. Hacettepe Journal of Mathematics and Statistics 45, 5 (2016), 1379–1392.
MR 3699549 |
Zbl 1369.53021
[7] Dutta, T., Bhattacharyya, A., Debnath, S.: Conformal Ricci soliton in almost C($\lambda $) manifold. Internat. J. Math. Combin. 3 (2016), 17–26.
[8] Dwivedi, M. K., Kim, J.-S.:
On conharmonic curvature tensor in K-contact and Sasakian manifolds. Bulletin of the Malaysian Mathematical Sciences Society 34, 1 (2011), 171–180.
MR 2783789 |
Zbl 1207.53040
[10] Formella, S., Mikeš, J.: Geodesic mappings of Einstein spaces. Ann. Sci. Stetinenses 9 (1994), 31–40.
[13] Hinterleitner, I., Mikeš, J.:
Geodesic mappings and Einstein spaces. In: Geometric Methods in Physics, Trends in Mathematics, Birkhäuser, Basel, 2013, 331–335.
MR 3364052 |
Zbl 1268.53049
[14] Hinterleitner, I., Kiosak, V.:
$\varphi (Ric)$-vektor fields in Riemannian spaces. Arch. Math. 5 (2008), 385–390.
MR 2501574
[15] Hinterleitner, I., Kiosak, V.: $\varphi (Ric)$-vector fields on conformally flat spaces. AIP Conf. Proc. 1191 (2009), 98–103.
[16] Hinterleitner, I., Mikeš, J.: Geodesic mappings onto Weyl manifolds. J. Appl. Math. 2, 1 (2009), 125–133; In: Proc. 8th Int. Conf. on Appl. Math. (APLIMAT 2009), Slovak University of Technology, Bratislava, 2009, 423–430.
[17] Mikeš, J.: Geodesic mappings of semisymmetric Riemannian spaces. Archives at VINITI, Odessk. Univ., Moscow, 1976.
[18] Mikeš, J., Vanžurová, A., Hinterleitner, I.:
Geodesic Mappings and Some Generalizations. Palacky Univ. Press, Olomouc, 2009.
MR 2682926 |
Zbl 1222.53002
[19] Mikeš, J.:
Differential Geometry of Special Mappings. Palacky Univ. Press, Olomouc, 2015.
MR 3442960 |
Zbl 1337.53001
[20] Mikeš, J., Starko, G. A.:
On hyperbolically Sasakian and equidistant hyperbolically Kählerian spaces. Ukr. Geom. Sb. 32 (1989), 92–98.
MR 1049372 |
Zbl 0711.53042
[21] Mikeš, J.:
On Sasaki spaces and equidistant Kähler spaces. Sov. Math., Dokl. 34 (1987), 428–431.
MR 0819428 |
Zbl 0631.53018
[23] Mikeš, J.:
On geodesic mappings of 2-Ricci symmetric Riemannian spaces. Math. Notes 28 (1981), 622–624; Transl. from: Mat. Zametki 28 (1980), 313–317.
DOI 10.1007/BF01157926 |
MR 0587405
[24] Mikeš, J.:
Geodesic mappings of $m$-symmetric and generalized semisymmetric spaces. Russian Math. (Iz. VUZ) 36, 8 (1992), 38–42.
MR 1233688
[25] Mikeš, J.:
Geodesic mappings on semisymmetric spaces. Russian Math. (Iz. VUZ) 38, 2 (1994), 35–41.
MR 1302090
[29] Sinyukov, N. S.:
Geodesic Mappings of Riemannian Spaces. Nauka, Moscow, 1979.
Zbl 0637.53020
[31] Tripathi, M. M.: Ricci solitons in contact metric manifolds. arXiv:0801,4222v1 [mathDG] 2008 (2008), 1–6.
[32] Yadav, S., Suthar, D. L.:
Certain derivation on Lorentzian $\alpha $-Sasakian manifold. Global Journal of Science Frontier Research Mathematics and Decision Sciences 12, 2 (2012), 1–6.
MR 2814463