[1] Adolfsson, K., Enelund, J., Olsson, P.:
On the fractional order model of viscoelasticity. Mech. Time-Depend. Mat. 9 (2005), 15-34.
DOI 10.1007/s11043-005-3442-1
[4] Cao, J., Yang, Q., Huang, Z.:
Optimal mild solutions and weighted pseudo-almost periodic classical solutions of fractional integro-differential equations. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 224-234.
DOI 10.1016/j.na.2010.08.036 |
MR 2734991 |
Zbl 1213.34089
[7] Debbouche, A., El-borai, M. M.:
Weak almost periodic and optimal mild solutions of fractional evolution equations. Electron. J. Differ. Equ. (electronic only) 2009 (2009), No. 46, 8 pages.
MR 2495851 |
Zbl 1171.34331
[12] Henríquez, H. R., Andrade, B. de, Rabelo, M.:
Existence of almost periodic solutions for a class of abstract impulsive differential equations. ISRN Math. Anal. 2011 (2011), Article ID 632687, 21 pages.
DOI 10.5402/2011/632687 |
MR 2784886 |
Zbl 1242.34110
[16] Liu, J., Zhang, C.:
Composition of piecewise pseudo almost periodic functions and applications to abstract impulsive differential equations. Adv. Difference Equ. 2013 (2013), 2013:11, 21 pages.
DOI 10.1186/1687-1847-2013-11 |
MR 3019356
[18] Liu, J., Zhang, C.:
Existence of almost periodic solutions for impulsive neutral functional differential equations. Abstr. Appl. Anal. 2014 (2014), Article ID 782018, 11 pages.
DOI doi.org/10.1155/2014/782018 |
MR 3251537
[20] Podlubny, I.:
Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering 198, Academic Press, San Diego (1999).
MR 1658022 |
Zbl 0924.34008