Previous |  Up |  Next

Article

Keywords:
liquid crystals system; critical Besov space; negative index; well-posedness; blow-up
Summary:
The local well-posedness for the Cauchy problem of the liquid crystals system in the critical Besov space $\dot {B}_{p,1}^{n/p-1}(\mathbb R^n)\times \dot {B}_{p,1}^{n/p}(\mathbb R^n)$ with $n<p<2n$ is established by using the heat semigroup theory and the Littlewood-Paley theory. The global well-posedness for the system is obtained with small initial datum by using the fixed point theorem. The blow-up results for strong solutions to the system are also analysed.
References:
[1] Abidi, H.: Equation de Navier-Stokes avec densité et viscosité variables dans l'espace critique. Rev. Mat. Iberoam. 23 (2007), 537-586 French. DOI 10.4171/RMI/505 | MR 2371437 | Zbl 1175.35099
[2] Abidi, H., Gui, G., Zhang, P.: On the wellposedness of three-dimensional inhomogeneous Navier-Stokes equations in the critical spaces. Arch. Ration. Mech. Anal. 204 (2012), 189-230. DOI 10.1007/s00205-011-0473-4 | MR 2898739 | Zbl 1314.76021
[3] Abidi, H., Zhang, P.: On the global well-posedness of 2-D density-dependent Navier-Stokes system with variable viscosity. Available at Arxiv:1301.2371. MR 3344050
[4] Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften 343, Springer, Heidelberg (2011). DOI 10.1007/978-3-642-16830-7 | MR 2768550 | Zbl 1227.35004
[5] Cannone, M.: Harmonic analysis tools for solving the incompressible Navier-Stokes equations. Handbook of Mathematical Fluid Dynamics. Vol. III Elsevier/North Holland, Amsterdam S. Friedlander et al. (2004), 161-244. DOI 10.1016/s1874-5792(05)80006-0 | MR 2099035 | Zbl 1222.35139
[6] Cavaterra, C., Rocca, E., Wu, H.: Global weak solution and blow-up criterion of the general Ericksen-Leslie system for nematic liquid crystal flows. J. Differ. Equations 255 (2013), 24-57. DOI 10.1016/j.jde.2013.03.009 | MR 3045633 | Zbl 1282.35087
[7] Chen, Q., Miao, C.: Global well-posedness for the micropolar fluid system in critical Besov spaces. J. Differ. Equations 252 (2012), 2698-2724. DOI 10.1016/j.jde.2011.09.035 | MR 2860636 | Zbl 1234.35193
[8] Danchin, R.: Local theory in critical spaces for compressible viscous and heat-conductive gases. Commun. Partial Differ. Equations 26 (2001), 1183-1233. DOI 10.1081/PDE-100106132 | MR 1855277 | Zbl 1007.35071
[9] Danchin, R., Mucha, P. B.: A Lagrangian approach for the incompressible Navier-Stokes equations with variable density. Commun. Pure Appl. Math. 65 (2012), 1458-1480. DOI 10.1002/cpa.21409 | MR 2957705 | Zbl 1247.35088
[10] Du, Y., Wang, K.: Regularity of the solutions to the liquid crystal equations with small rough data. J. Differ. Equations 256 (2014), 65-81. DOI 10.1016/j.jde.2013.07.066 | MR 3115835 | Zbl 1320.35125
[11] Ericksen, J. L.: Hydrostatic theory of liquid crystals. Arch. Ration. Mech. Anal. 9 (1962), 371-378. DOI 10.1007/bf00253358 | MR 0137403 | Zbl 0105.23403
[12] Fujita, H., Kato, T.: On the Navier-Stokes initial value problem. I. Arch. Ration. Mech. Anal. 16 (1964), 269-315. DOI 10.1007/BF00276188 | MR 0166499 | Zbl 0126.42301
[13] Hao, Y., Liu, X.: The existence and blow-up criterion of liquid crystals system in critical Besov space. Commun. Pure Appl. Anal. 13 (2014), 225-236. DOI 10.3934/cpaa.2014.13.225 | MR 3082558 | Zbl 1273.76352
[14] Hong, M.-C.: Global existence of solutions of the simplified Ericksen-Leslie system in dimension two. Calc. Var. Partial Differ. Equ. 40 (2011), 15-36. DOI 10.1007/s00526-010-0331-5 | MR 2745194 | Zbl 1213.35014
[15] Huang, J., Paicu, M., Zhang, P.: Global solutions to 2-D inhomogeneous Navier-Stokes system with general velocity. J. Math. Pures Appl. (9) 100 (2013), 806-831. DOI 10.1016/j.matpur.2013.03.003 | MR 3125269 | Zbl 1290.35184
[16] Jiang, F., Jiang, S., Wang, D.: Global weak solutions to the equations of compressible flow of nematic liquid crystals in two dimensions. Arch. Ration. Mech. Anal. 214 (2014), 403-451. DOI 10.1007/s00205-014-0768-3 | MR 3255696 | Zbl 1307.35225
[17] Li, X., Wang, D.: Global solution to the incompressible flow of liquid crystals. J. Differ. Equations 252 (2012), 745-767. DOI 10.1016/j.jde.2011.08.045 | MR 2852225 | Zbl 1277.35121
[18] Lin, F.: Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena. Commun. Pure Appl. Anal. 42 (1989), 789-814. DOI 10.1002/cpa.3160420605 | MR 1003435 | Zbl 0703.35173
[19] Lin, F., Lin, J., Wang, C.: Liquid crystal flows in two dimensions. Arch. Ration. Mech. Anal. 197 (2010), 297-336. DOI 10.1007/s00205-009-0278-x | MR 2646822 | Zbl 1346.76011
[20] Lin, F., Liu, C.: Partial regularity of the dynamic system modeling the flow of liquid crystals. Discrete Contin. Dyn. Syst. 2 (1996), 1-22. DOI 10.3934/dcds.1996.2.1 | MR 1367385 | Zbl 0948.35098
[21] Lin, F., Liu, C.: Existence of solutions for the Ericksen-Leslie system. Arch. Ration. Mech. Anal. 154 (2000), 135-156. DOI 10.1007/s002050000102 | MR 1784963 | Zbl 0963.35158
[22] Lin, J., Ding, S.: On the well-posedness for the heat flow of harmonic maps and the hydrodynamic flow of nematic liquid crystals in critical spaces. Math. Methods Appl. Sci. 35 (2012), 158-173. DOI 10.1002/mma.1548 | MR 2876822 | Zbl 1242.35006
[23] Liu, Q., Zhang, T., Zhao, J.: Global solutions to the 3D incompressible nematic liquid crystal system. J. Differ. Equations 258 (2015), 1519-1547. DOI 10.1016/j.jde.2014.11.002 | MR 3295591 | Zbl 1308.35222
[24] Paicu, M., Zhang, P., Zhang, Z.: Global unique solvability of inhomogeneous Navier-Stokes equations with bounded density. Commun. Partial Differ. Equations 38 (2013), 1208-1234. DOI 10.1080/03605302.2013.780079 | MR 3169743 | Zbl 1314.35086
[25] Wang, C.: Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data. Arch. Ration. Mech. Anal. 200 (2011), 1-19. DOI 10.1007/s00205-010-0343-5 | MR 2781584 | Zbl 1285.35085
[26] Xu, F., Hao, S., Yuan, J.: Well-posedness for the density-dependent incompressible flow of liquid crystals. Math. Methods. Appl. Sci. 38 (2015), 2680-2702. DOI 10.1002/mma.3248 | MR 3382698 | Zbl 06523185
[27] Xu, X., Zhang, Z.: Global regularity and uniqueness of weak solution for the 2-D liquid crystal flows. J. Differ. Equations 252 (2012), 1169-1181. DOI 10.1016/j.jde.2011.08.028 | MR 2853534 | Zbl 1336.76005
[28] Zhao, J., Liu, Q., Cui, S.: Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows. Commun. Pure Appl. Anal. 12 (2013), 341-357. DOI 10.3934/cpaa.2013.12.341 | MR 2972434 | Zbl 1264.35007
Partner of
EuDML logo