Previous |  Up |  Next

Article

Keywords:
multivalued stochastic differential equation; Covitz-Nadler fixed point theorem; multivalued stochastic process
Summary:
We analyse multivalued stochastic differential equations driven by semimartingales. Such equations are understood as the corresponding multivalued stochastic integral equations. Under suitable conditions, it is shown that the considered multivalued stochastic differential equation admits at least one solution. Then we prove that the set of all solutions is closed and bounded.
References:
[1] Agarwal, R. P., O'Regan, D.: Existence for set differential equations via multivalued operator equations. Differential Equations and Applications 5 1-5 Nova Science Publishers, New York (2007). MR 2353574
[2] Ahmad, B., Sivasundaram, S.: $\phi_0$-stability of impulsive hybrid setvalued differential equations with delay by perturbing Lyapunov functions. Commun. Appl. Anal. 12 (2008), 137-145. MR 2191489 | Zbl 1185.34102
[3] Anguraj, A., Vinodkumar, A., Chang, Y. K.: Existence results on impulsive stochastic functional differential inclusions with delays. Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 20 (2013), 301-318. MR 3098454 | Zbl 1268.34164
[4] Aubin, J.-P., Prato, G. Da: The viability theorem for stochastic differential inclusions. Stochastic Anal. Appl. 16 (1998), 1-15. DOI 10.1080/07362999808809512 | MR 1603852 | Zbl 0931.60059
[5] Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Modern Birkhäuser Classics. Birkhäuser, Boston (2009). DOI 10.1007/978-0-8176-4848-0 | MR 2458436 | Zbl 1168.49014
[6] Balasubramaniam, P., Ntouyas, S. K.: Controllability for neutral stochastic functional differential inclusions with infinite delay in abstract space. J. Math. Anal. Appl. 324 (2006), 161-176. DOI 10.1016/j.jmaa.2005.12.005 | MR 2262463 | Zbl 1118.93007
[7] Bhaskar, T. G., Lakshmikantham, V., Devi, J. Vasundhara: Nonlinear variation of parameters formula for set differential equations in a metric space. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 63 (2005), 735-744. DOI 10.1016/j.na.2005.02.036 | MR 2188146 | Zbl 1153.34313
[8] Bouchen, A., Arni, A. El, Ouknine, Y.: Multivalued stochastic integration and stochastic differential inclusions. Stochastics Stochastics Rep. 68 (2000), 297-327. DOI 10.1080/17442500008834227 | MR 1746184 | Zbl 0957.60069
[9] Burachik, R. S., Iusem, A. N.: Set-Valued Mappings and Enlargements of Monotone Operators. Springer Optimization and Its Applications. Springer, Berlin (2008). DOI 10.1007/978-0-387-69757-4 | MR 2353163
[10] Chung, K. L., Williams, R. J.: Introduction to Stochastic Integration. Progress in Probability and Statistics 4. Birkhäuser, Boston (1983). DOI 10.1007/978-1-4757-9174-7 | MR 0711774 | Zbl 0527.60058
[11] H. Covitz, S. B. Nadler, Jr.: Multi-valued contraction mappings in generalized metric spaces. Isr. J. Math. 8 (1970), 5-11. DOI 10.1007/BF02771543 | MR 0263062 | Zbl 0192.59802
[12] Prato, G. Da, Frankowska, H.: A stochastic Filippov theorem. Stochastic Anal. Appl. 12 (1994), 409-426. DOI 10.1080/07362999408809361 | MR 1285803 | Zbl 0810.60059
[13] Blasi, F. S. De, Iervolino, F.: Equazioni differenziali con soluzioni a valore compatto convesso. Boll. Unione Mat. Ital., IV. Ser., 2 (1969), 491-501 Errata corrige ibid. 4 1969 699. MR 0265653 | Zbl 0195.38501
[14] Dunford, N., Schwartz, J. T.: Linear Operators. I. General Theory. Pure and Applied Mathematics 7. Interscience Publishers, New York (1958). MR 0117523 | Zbl 0084.10402
[15] Hiai, F., Umegaki, H.: Integrals, conditional expectations, and martingales of multivalued functions. J. Multivariate Anal. 7 (1977), 149-182. DOI 10.1016/0047-259X(77)90037-9 | MR 0507504 | Zbl 0368.60006
[16] Hu, S., Papageorgiou, N. S.: Handbook of Multivalued Analysis. Volume I: Theory. Mathematics and Its Applications. Kluwer Academic Publishers, Dordrecht (1997). MR 1485775 | Zbl 0887.47001
[17] Jiang, J., Li, C. F., Chen, H. T.: Existence of solutions for set differential equations involving causal operator with memory in Banach space. J. Appl. Math. Comput. 41 (2013), 183-196. DOI 10.1007/s12190-012-0604-6 | MR 3017116 | Zbl 1302.34114
[18] Kuratowski, K., Ryll-Nardzewski, C.: A general theorem on selectors. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 13 (1965), 397-403. MR 0188994 | Zbl 0152.21403
[19] Lakshmikantham, V., Bhaskar, T. G., Devi, J. Vasundhara: Theory of Set Differential Equations in a Metric Spaces. Cambridge Scientific Publishers, Cambridge (2006). MR 2438229 | Zbl 1156.34003
[20] Malinowski, M. T.: On set differential equations in Banach spaces---a second type Hukuhara differentiability approach. Appl. Math. Comput. 219 (2012), 289-305. DOI 10.1016/j.amc.2012.06.019 | MR 2949593 | Zbl 1297.34073
[21] Malinowski, M. T.: Second type Hukuhara differentiable solutions to the delay set-valued differential equations. Appl. Math. Comput. 218 (2012), 9427-9437. DOI 10.1016/j.amc.2012.03.027 | MR 2923039 | Zbl 1252.34071
[22] Malinowski, M. T.: On a new set-valued stochastic integral with respect to semimartingales and its applications. J. Math. Anal. Appl. 408 (2013), 669-680. DOI 10.1016/j.jmaa.2013.06.054 | MR 3085061 | Zbl 1306.60062
[23] Malinowski, M. T.: Set-valued and fuzzy stochastic integral equations driven by semimartingales under Osgood condition. Open. Math. (electronic only) 13 (2015), 106-134. DOI 10.1515/math-2015-0011 | MR 3314167 | Zbl 1307.93381
[24] Park, J. Y., Jeong, J. U.: Existence results for impulsive neutral stochastic functional integro-differential inclusions with infinite delays. Adv. Difference Equ. (electronic only) 2014 (2014), Article ID 17, 17 pages. DOI 10.1186/1687-1847-2014-17 | MR 3213919 | Zbl 1343.93017
[25] Protter, P.: Stochastic Integration and Differential Equations. A New Approach. Applications of Mathematics 21. Springer, Berlin (1990). DOI 10.1007/978-3-662-02619-9 | MR 1037262 | Zbl 0694.60047
[26] Wang, P., Sun, W.: Practical stability in terms of two measures for set differential equations on time scales. Sci. World J. (2014), (2014), Article ID 241034, 7 pages. DOI 10.1155/2014/241034
[27] Yun, Y. S.: On the estimation of approximate solution for SDI. Korean Annals Math. 20 (2003), 63-69.
[28] Yun, Y. S.: The boundedness of solutions for stochastic differential inclusions. Bull. Korean Math. Soc. 40 (2003), 159-165. DOI 10.4134/BKMS.2003.40.1.159 | MR 1958233 | Zbl 1034.60009
[29] Yun, Y. S.: The closed property of set of solutions for stochastic differential inclusions. Commun. Korean Math. Soc. 20 (2005), 135-144. DOI 10.4134/CKMS.2005.20.1.135 | MR 2167083 | Zbl 1093.60047
Partner of
EuDML logo