Previous |  Up |  Next

Article

Keywords:
Cauchy symmetric; strongly $g$-developable; $\sigma$-strong network; $\sigma$-locally finite strong weak base
Summary:
In this paper, we give an affirmative answer to the problem posed by Y. Tanaka and Y. Ge (2006) in "Around quotient compact images of metric spaces, and symmetric spaces", Houston J. Math. 32 (2006) no. 1, 99-117.
References:
[1] An T.V., Tuyen L.Q.: On an affirmative answer to S. Lin's problem. Topology Appl., 158 (2011), 1567–1570. DOI 10.1016/j.topol.2011.05.027 | MR 2812465
[2] An T.V., Tuyen L.Q.: On $\pi$-images of separable metric spaces and a problem of Shou Lin. Mat. Vesnik 64 (2012), no. 4, 297–302. MR 2965962
[3] Arhangel'skii A.V.: Mappings and spaces. Russian Math. Surveys 21 (1966), no. 4, 115–162. MR 0227950
[4] Engelking R.: General Topology. PWN-Polish Scientific Publishers, Warsaw, 1977. MR 0500780 | Zbl 0684.54001
[5] Ikeda Y., Liu C., Tanaka Y.: Quotient compact images of metric spaces, and related matters. Topology Appl. 122 (2002), no. 1-2, 237–252. DOI 10.1016/S0166-8641(01)00145-6 | MR 1919303 | Zbl 0994.54015
[6] Lin S., Tanaka Y.: Point-countable $k$-networks, closed maps, and related results. Topology Appl. 59 (1994), 79–86. DOI 10.1016/0166-8641(94)90101-5 | MR 1293119 | Zbl 0817.54025
[7] Tanaka Y.: Symmetric spaces, $g$-developable spaces and $g$-metrizable spaces. Math. Japon. 36 (1991), 71–84. MR 1093356 | Zbl 0732.54023
[8] Tanaka Y.: Theory of $k$-networks II. Questions Answers Gen. Topology 19 (2001), 27–46. MR 1815344 | Zbl 0970.54023
[9] Tanaka Y., Ge Y.: Around quotient compact images of metric spaces, and symmetric spaces. Houston J. Math. 32 (2006) no. 1, 99–117. MR 2202355
[10] Tanaka Y., Li Z.: Certain covering-maps and $k$-networks, and related matters. Topology Proc. 27 (2003), no. 1, 317–334. MR 2048941 | Zbl 1075.54010
[11] Tuyen L.Q.: A new characterization of spaces with locally countable sn-networks. Mat. Vesnik 65 (2013), no. 1, 8–13. MR 3001745 | Zbl 1313.54061
[12] Yan P.: On strong sequence-covering compact mappings. Northeast. Math. J. 14 (1998), 341–344. MR 1685267 | Zbl 0927.54030
Partner of
EuDML logo