Article
Keywords:
Cauchy symmetric; strongly $g$-developable; $\sigma$-strong network; $\sigma$-locally finite strong weak base
Summary:
In this paper, we give an affirmative answer to the problem posed by Y. Tanaka and Y. Ge (2006) in "Around quotient compact images of metric spaces, and symmetric spaces", Houston J. Math. 32 (2006) no. 1, 99-117.
References:
[2] An T.V., Tuyen L.Q.:
On $\pi$-images of separable metric spaces and a problem of Shou Lin. Mat. Vesnik 64 (2012), no. 4, 297–302.
MR 2965962
[3] Arhangel'skii A.V.:
Mappings and spaces. Russian Math. Surveys 21 (1966), no. 4, 115–162.
MR 0227950
[7] Tanaka Y.:
Symmetric spaces, $g$-developable spaces and $g$-metrizable spaces. Math. Japon. 36 (1991), 71–84.
MR 1093356 |
Zbl 0732.54023
[9] Tanaka Y., Ge Y.:
Around quotient compact images of metric spaces, and symmetric spaces. Houston J. Math. 32 (2006) no. 1, 99–117.
MR 2202355
[10] Tanaka Y., Li Z.:
Certain covering-maps and $k$-networks, and related matters. Topology Proc. 27 (2003), no. 1, 317–334.
MR 2048941 |
Zbl 1075.54010
[11] Tuyen L.Q.:
A new characterization of spaces with locally countable sn-networks. Mat. Vesnik 65 (2013), no. 1, 8–13.
MR 3001745 |
Zbl 1313.54061
[12] Yan P.:
On strong sequence-covering compact mappings. Northeast. Math. J. 14 (1998), 341–344.
MR 1685267 |
Zbl 0927.54030