Previous |  Up |  Next

Article

Keywords:
Bakry-Emery Ricci curvature tensor; closure theorem; Riccati equation
Summary:
In this manuscript we provide new extensions for the Myers theorem in weighted Riemannian and Lorentzian manifolds. As application we obtain a closure theorem for spatial hypersurfaces immersed in some time-like manifolds.
References:
[1] Bakry D., Emery E.: Diffusions hypercontractives. Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., 1123, Springer, Berlin, 1985, pp. 177–206. MR 0889476 | Zbl 0561.60080
[2] Bakry D., Ledoux M.: Sobolev inequalities and Myers diameter theorem for an abstract Markov generator. Duke Math. J. 81 (1996), no. 1, 252–270. MR 1412446
[3] Beem J., Ehrlich P., Easley K.: Global Lorentzian Geometry. 2nd edn., Marcel Dekker, New York, 1996. MR 1384756 | Zbl 0846.53001
[4] Case J.: Singularity theorems and the lorentzian splitting theorem for the Bakry-Emery-Ricci tensor. J. Geom. Phys. 60 (2010), no. 3, 477–490. DOI 10.1016/j.geomphys.2009.11.001 | MR 2600009 | Zbl 1188.53075
[5] Cavalcante M.P., Oliveira J.Q., Santos M.S.: Compactness in weighted manifolds and applications. Results Math. 68 (2015), 143–156. DOI 10.1007/s00025-014-0427-x | MR 3391497 | Zbl 1327.53037
[6] Frankel T.: Gravitation Curvature. An Introduction to Einstein's Theory. W.H. Freeman and Co., San Francisco, Calif., 1979. MR 0518868
[7] Frankel T., Galloway G.: Energy density and spatial curvature in general relativity. J. Math. Phys. 22 (1981), no. 4, 813–817. DOI 10.1063/1.524961 | MR 0617327 | Zbl 0483.76135
[8] Galloway G.J.: A generalization of Myers theorem and an application to relativistic cosmology. J. Differential Geom. 14 (1979), 105–116. DOI 10.4310/jdg/1214434856 | MR 0577883 | Zbl 0444.53036
[9] Galloway G.J., Woolgar E.: Cosmological singularities in Bakry-Émery space-times. preprint, 2013. MR 3282334
[10] Ledoux M.: The geometry of Markov diffusion generators. Ann. Fac. Sci. Toulouse Math. 9 (2000), no. 2, 305–366. DOI 10.5802/afst.962 | MR 1813804 | Zbl 0980.60097
[11] Limoncu M.: The Bakry-Emery Ricci tensor and its applications to some compactness theorems. Math. Z. 271 (2012), 715–722. DOI 10.1007/s00209-011-0886-7 | MR 2945580 | Zbl 1264.53042
[12] Limoncu M.: Modifications of the Ricci tensor and applications. Arch. Math. (Basel) 95 (2010), 191–199. DOI 10.1007/s00013-010-0150-0 | MR 2674255
[13] Lott J.: Some geometric properties of the Bakry-Émery-Ricci tensor. Comment. Math. Helv. 78 (2003), no. 4, 865–883. DOI 10.1007/s00014-003-0775-8 | MR 2016700 | Zbl 1038.53041
[14] Morgan F.: Myers' theorem with density. Kodai Math. J. 29 (2006), no. 3, 454–461. DOI 10.2996/kmj/1162478772 | MR 2278776 | Zbl 1132.53306
[15] Myers S.B.: Riemannian manifolds with positive mean curvature. Duke Math. J. 8 (1941) 401–404. DOI 10.1215/S0012-7094-41-00832-3 | MR 0004518 | Zbl 0025.22704
[16] Qian Z.: Estimates for weighted volumes and applications. Quart. J. Math. Oxford 48 (1997), 235–242. DOI 10.1093/qmath/48.2.235 | MR 1458581 | Zbl 0902.53032
[17] Rimoldi M.: A remark on Einstein warped products. Pacific J. Math. 252 (2011), no. 1, 207–218. DOI 10.2140/pjm.2011.252.207 | MR 2862148 | Zbl 1232.53036
[18] Ringström H.: On the Topology and Future Stability of the Universe. Oxford Mathematical Monographs, Oxford University Press, Oxford, 2013. MR 3186493 | Zbl 1270.83005
[19] Rupert M., Woolgar E.: Bakry-Émery black holes. Classical Quantum Gravity 31 (2014), no. 2, 025008. DOI 10.1088/0264-9381/31/2/025008 | MR 3157702 | Zbl 1302.83023
[20] Sprouse S.: Integral curvature bounds and bounded diameter. Comm. Anal. Geom. 8 (2000), 531–543. DOI 10.4310/CAG.2000.v8.n3.a4 | MR 1775137 | Zbl 0984.53018
[21] Wei G., Wylie W.: Comparison geometry for the Bakry-Emery Ricci tensor. J. Differential Geom. 83 (2009), no. 2, 377–405. MR 2577473 | Zbl 1189.53036
[22] Woolgar E.: Scalar-tensor gravitation and the Bakry-Emery-Ricci tensor. Classical Quantum Gravity 30 (2013) 085007. DOI 10.1088/0264-9381/30/8/085007 | MR 3044364 | Zbl 1267.83094
[23] Yun J.-G.: A note on the generalized Myers theorem. Bull. Korean Math. Soc. 46 (2009), no. 1, 61–66. DOI 10.4134/BKMS.2009.46.1.061 | MR 2488500 | Zbl 1176.53045
[24] Zhang S.: A theorem of Ambrose for Bakry-Emery Ricci tensor. Ann. Global Anal. Geom. 45 (2014), no. 3, 233–238. DOI 10.1007/s10455-013-9396-7 | MR 3170524 | Zbl 1292.53027
Partner of
EuDML logo