Previous |  Up |  Next

Article

Keywords:
switching linear parameter-varying system; flight control; morphing aircraft; mode dependent average dwell time
Summary:
In flight control of a morphing aircraft, the design objective and the dynamics may be different in its various configurations. To accommodate different performance goals in different sweep wing configurations, a novel switching strategy, mode dependent average dwell time (MDADT), is adopted to investigate the flight control of a morphing aircraft in its morphing phase. The switching signal used in this note is more general than the average dwell time (ADT), in which each mode has its own ADT. Under some simplified assumptions the control synthesis condition is formulated as a linear matrix optimization problem and a set of mode-dependent dynamic state feedback controllers are designed. Afterwards the proposed approach is applied to a morphing aircraft with a variable sweep wing to demonstrate its validity.
References:
[1] Apkarian, P., Gahinet, P., Becker, Greg: Self-scheduled H{$_\infty$} control of linear parameter-varying systems: a design example. Automatica 31 (1005), 9, 1251-1261. DOI 10.1016/0005-1098(95)00038-x | MR 1349401
[2] Baldelli, D. H., Lee, Dong-Hwan, Peña, R. S. Sánchez, Cannon, B.: Modeling and control of an aeroelastic morphing vehicle. J. Guidance, Control, and Dynamics 31 (2008), 6, 1687-1699. DOI 10.2514/1.35445
[3] Barbarino, S., Bilgen, O., Ajaj, R. M., Friswell, M. I., Inman, D. J.: A review of morphing aircraft. J. Intelligent Material Systems and Structures 22 (2011), 9, 823-877. DOI 10.1177/1045389x11414084
[4] Bowman, J. C., Plumley, R. W., Dubois, J. A., Wright, D. M.: Mission effectiveness comparisons of morphing and non-morphing vehicles. In: 6th AIAA Aviation Technology, Integration and Operations Conference (ATIO) 2006, pp. 25-27. DOI 10.2514/6.2006-7771
[5] Chen, Pang-Chia: The design of smooth switching control with application to v/stol aircraft dynamics under input and output constraints. Asian J. Control 14 (2012), 2, 439-453. DOI 10.1002/asjc.345 | MR 2908807 | Zbl 1286.93070
[6] Hanifzadegan, M., Nagamune, R.: Smooth switching lpv controller design for lpv systems. Automatica 50 (2014), 5, 1481-1488. DOI 10.1016/j.automatica.2014.03.014 | MR 3198788 | Zbl 1296.93079
[7] Hespanha, J. P., Morse, A. S.: Stability of switched systems with average dwell-time. In: Decision and Control, 1999, Proc. 38th IEEE Conference, IEEE 3 (1999), pp. 2655-2660. DOI 10.1109/cdc.1999.831330
[8] Hjartarson, A., Seiler, P., Balas, G. J.: Lpv analysis of a gain scheduled control for an aeroelastic aircraft. In: 2014 American Control Conference, IEEE (2014), pp. 3778-3783. DOI 10.1109/acc.2014.6859301
[9] Hu, Ke, Yuan, Jingqi: On switching H{$_\infty$} controllers for nuclear steam generator water level: A multiple parameter-dependent lyapunov functions approach. Ann. Nuclear Energy 35 (2008), 10, 1857-1863. DOI 10.1016/j.anucene.2008.04.004
[10] Jiang, Weilai, Dong, Chaoyang, Wang, Qing: A systematic method of smooth switching lpv controllers design for a morphing aircraft. Chinese J. Aeronautics 28 (2015), 6, 1640-1649. DOI 10.1016/j.cja.2015.10.005
[11] Liberzon, D., Morse, A. S.: Basic problems in stability and design of switched systems. IEEE Control Syst. 19 (1999), 5, 59-70. DOI 10.1109/37.793443
[12] Lu, Bei, Wu, Fen: Switching lpv control designs using multiple parameter-dependent lyapunov functions. Automatica 40 (2004), 11, 1973-1980. DOI 10.1016/j.automatica.2004.06.011 | MR 2156006 | Zbl 1133.93370
[13] Lu, Bei, Wu, Fen, Kim, SungWan: Switching lpv control of an f-16 aircraft via controller state reset. IEEE Trans. Control Syst. Technol. 14 (2006), 2, 267-277. DOI 10.1109/tcst.2005.863656
[14] Postma, M., Nagamune, R.: Air-fuel ratio control of spark ignition engines using a switching lpv controller. IEEE Trans. Control Syst. Technol. 20 (2012), 5, 1175-1187. DOI 10.1109/tcst.2011.2163937
[15] Seigler, T. M., Neal, D. A.: Analysis of transition stability for morphing aircraft. J. Guidance, Control, and Dynamics 32 (2009), 1947-1954. DOI 10.2514/1.44108
[16] Shamma, J. S: An overview of lpv systems. In: Control of Linear Parameter Varying Systems with Applications, Springer 2012, pp. 3-26. DOI 10.1007/978-1-4614-1833-7_1 | MR 2920100
[17] Shamma, J. S., Athans, M.: Analysis of gain scheduled control for nonlinear plants. IEEE Trans. Automat. Control 35 (1990), 8, 898-907. DOI 10.1109/9.58498 | MR 1064640 | Zbl 0723.93022
[18] Shamma, J. S., Athans, M.: Guaranteed properties of gain scheduled control for linear parameter-varying plants. Automatica 27 (1991), 3, 559-564. DOI 10.1016/0005-1098(91)90116-j | MR 1104514 | Zbl 0754.93022
[19] Wang, Shun, Zeng, Ming, Yu, Zhiwei, Liu, Yu: New results on finite-time stability of switched linear systems with average dwell time. IFAC Proc. Vol. 47 (2014), 3, 1495-1500. DOI 10.3182/20140824-6-za-1003.02084
[20] Wu, Fen: Control of Linear Parameter Varying Systems. PhD Thesis, University of California at Berkeley, 1995.
[21] Wu, Fen, Grigoriadis, K. M: Lpv systems with parameter-varying time delays: analysis and control. Automatica 37 (2001), 2, 221-229. DOI 10.1016/s0005-1098(00)00156-4 | MR 1832028 | Zbl 0969.93020
[22] Wu, Fen, Packard, A., Balas, G.: Lpv control design for pitch-axis missile autopilots. In: Decision and Control, 1995, Proc. 34th IEEE Conference, IEEE 1 (1995), pp. 188-193. DOI 10.1109/cdc.1995.478672
[23] Yagoubi, M.: On multiobjective synthesis for parameter-dependent descriptor systems. IET Control Theory Appl. 4 (2010), 5, 817-826. DOI 10.1049/iet-cta.2009.0149 | MR 2758796
[24] Yue, Ting, Wang, Lixin, Ai, Junqiang: Longitudinal linear parameter varying modeling and simulation of morphing aircraft. J. Aircraft 50 (2013), 6, 1673-1681. DOI 10.2514/1.c031316
[25] Zhao, Xudong, Liu, Hao, Wang, Zhenhuan: Weighted H{$_\infty$} performance analysis of switched linear systems with mode-dependent average dwell time. Int. J. Systems Sci. 44 (2013), 11, 2130-2139. DOI 10.1080/00207721.2012.684905 | MR 3172768 | Zbl 1307.93150
[26] Zhao, Xudong, Zhang, Lixian, Shi, Peng, Liu, Ming: Stability and stabilization of switched linear systems with mode-dependent average dwell time. IEEE Trans. Automat. Control 57 (2012), 7, 1809-1815. DOI 10.1109/tac.2011.2178629 | MR 2945945
Partner of
EuDML logo