Previous |  Up |  Next

Article

Keywords:
fuzzy metric space; Ekeland variational principle; Caristi's fixed point theorem; Takahashi's maximization theorem
Summary:
In this article, we extend Caristi's fixed point theorem, Ekeland's variational principle and Takahashi's maximization theorem to fuzzy metric spaces in the sense of George and Veeramani [A. George , P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems. 64 (1994) 395-399]. Further, a direct simple proof of the equivalences among these theorems is provided.
References:
[1] Altun, I., Mihet, D.: Ordered non-archimedean fuzzy metric spaces and some fixed point results. Fixed Point Theory Appl. 2010, Art. ID 782680, 11 pp. DOI 10.1155/2010/782680 | MR 2595842 | Zbl 1191.54033
[2] Aubin, J.-P.: Optima and equilibria. An introduction to nonlinear analysis. Translated from the French by Stephen Wilson. Second edition. Springer-Verlag, Graduate Texts in Mathematics 149, Berlin 1998. MR 1729758
[3] Bae, J. S., Cho, E. W., Yeom, S. H.: A generalization of the Caristi-Kirk fixed point theorem and its applications to mapping theorems. J. Korean Math. Soc. 31 (1994), 1, 29-48. MR 1269448
[4] Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundamenta Mathematicae 3 (1922), 1, 133-181. DOI 10.4064/fm-3-1-133-181
[5] Brøndsted, A.: Fixed points and partial orders. Proc. Amer. Math. Soc. 60 (1976), 365-366. DOI 10.1090/s0002-9939-1976-0417867-x | MR 0417867 | Zbl 0385.54030
[6] Browder, F. E.: On a theorem of Caristi and Kirk. In: Proc. Sem. Fixed point theory and its applications Dalhousie Univ., Halifax, 1975), Academic Press, New York 1976, pp. 23-27. MR 0461474 | Zbl 0379.54016
[7] Caristi, J.: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Amer. Math. Soc. 215 (1976), 241-251. DOI 10.1090/s0002-9947-1976-0394329-4 | MR 0394329 | Zbl 0305.47029
[8] Caristi, J., Kirk, W. A.: Geometric fixed point theory and inwardness conditions. In: Proc. Conf. The geometry of metric and linear spaces, Michigan State Univ., East Lansing 1974), Lecture Notes in Math. 490, Springer, Berlin 1975, pp. 74-83. DOI 10.1007/bfb0081133 | MR 0399968 | Zbl 0315.54052
[9] Chang, S. S., Luo, Q.: Caristi's fixed point theorem for fuzzy mappings and Ekeland's variational principle. Fuzzy Sets and Systems 64 (1994), 1, 119-125. DOI 10.1016/0165-0114(94)90014-0 | MR 1281293 | Zbl 0842.54041
[10] Ekeland, I.: Sur les problèmes variationnels. C. R. Acad. Sci. Paris Sér. A-B 275 (1972), A1057-A1059. MR 0310670 | Zbl 0259.49027
[11] Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47 (1974), 324-353. DOI 10.1016/0022-247x(74)90025-0 | MR 0346619 | Zbl 0286.49015
[12] Ekeland, I.: Nonconvex minimization problems. Bull. Amer. Math. Soc. 1 (1979), 3, 443-474. DOI 10.1090/s0273-0979-1979-14595-6 | MR 0526967 | Zbl 0441.49011
[13] George, A., Veeramani, P.: On some results in fuzzy metric spaces. Fuzzy Sets and Systems 64 (1994), 3, 395-399. DOI 10.1016/0165-0114(94)90162-7 | MR 1289545 | Zbl 0843.54014
[14] George, A., Veeramani, P.: Some theorems in fuzzy metric spaces. J. Fuzzy Math. 3 (1995), 4, 933-940. MR 1367026 | Zbl 0870.54007
[15] Grabiec, M.: Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems 27 (1988), 3, 385-389. DOI 10.1016/0165-0114(88)90064-4 | MR 0956385 | Zbl 0664.54032
[16] Gregori, V., Miñana, J.-J., Morillas, S.: Some questions in fuzzy metric spaces. Fuzzy Sets and Systems 204 (2012), 71-85. DOI 10.1016/j.fss.2011.12.008 | MR 2950797 | Zbl 1259.54001
[17] Gregori, V., Morillas, S., Sapena, A.: On a class of completable fuzzy metric spaces. Fuzzy Sets and Systems 161 (2010), 16, 2193-2205. DOI 10.1016/j.fss.2010.03.013 | MR 2652720 | Zbl 1201.54011
[18] Gregori, V., Morillas, S., Sapena, A.: Examples of fuzzy metrics and applications. Fuzzy Sets and Systems 170 (2011), 95-111. DOI 10.1016/j.fss.2010.10.019 | MR 2775611 | Zbl 1210.94016
[19] Gregori, V., Romaguera, S.: On completion of fuzzy metric spaces. Fuzzy Sets and Systems 130 (2002), 3, 399-404. DOI 10.1016/s0165-0114(02)00115-x | MR 1928435 | Zbl 1010.54002
[20] Gregori, V., Romaguera, S.: Characterizing completable fuzzy metric spaces. Fuzzy sets and systems 144 (2004), 3, 411-420. DOI 10.1016/s0165-0114(03)00161-1 | MR 2061403 | Zbl 1057.54010
[21] Hadžić, O., Pap, E.: Fixed Point Theory in Probabilistic Metric Spaces. Kluwer Academic Publishers, Mathematics and its Applications 536, Dordrecht 2001. DOI 10.1007/978-94-017-1560-7 | MR 1896451 | Zbl 1265.54127
[22] Jung, J. S., Cho, Y. J., Kang, S. M., Chang, S.-S.: Coincidence theorems for set-valued mappings and Ekeland's variational principle in fuzzy metric spaces. Fuzzy Sets and Systems 79 (1996), 2, 239-250. DOI 10.1016/0165-0114(95)00084-4 | MR 1388395 | Zbl 0867.54018
[23] Jung, J. S., Cho, Y. J., Kim, J. K.: Minimization theorems for fixed point theorems in fuzzy metric spaces and applications. Fuzzy Sets and Systems 61 (1994), 2, 199-207. DOI 10.1016/0165-0114(94)90234-8 | MR 1262469 | Zbl 0845.54004
[24] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Trends in Logic-Studia Logica Library 8, Dordrecht 2000. DOI 10.1007/978-94-015-9540-7 | MR 1790096 | Zbl 1087.20041
[25] Kramosil, I., Michálek, J.: Fuzzy metrics and statistical metric spaces. Kybernetika 11 (1975), 5, 336-344. MR 0410633 | Zbl 0319.54002
[26] Lee, G. M., Lee, B. S., Jung, J. S., Chang, S.-S.: Minimization theorems and fixed point theorems in generating spaces of quasi-metric family. Fuzzy Sets and Systems 101 (1999), 1, 143-152. DOI 10.1016/s0165-0114(97)00034-1 | MR 1658940 | Zbl 0986.54015
[27] Menger, K.: Statistical metrics. Proc. Nat. Acad. Sci. U. S. A. 28 (1942), 535-537. DOI 10.1073/pnas.28.12.535 | MR 0007576 | Zbl 0063.03886
[28] Radu, V.: Some remarks on the probabilistic contractions on fuzzy Menger spaces. Automat. Comput. Appl. Math. 11 (2003), 1, 125-131. MR 2428258
[29] Rodríguez-López, J., Romaguera, S.: The {H}ausdorff fuzzy metric on compact sets. Fuzzy Sets and Systems 147 (2004), 2, 273 -283. DOI 10.1016/j.fss.2003.09.007 | MR 2089291 | Zbl 1069.54009
[30] Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10 (1960), 313-334. DOI 10.2140/pjm.1960.10.313 | MR 0115153 | Zbl 0136.39301
[31] Schweizer, B., Sklar, A.: Probabilistic metric spaces. Zbl 0546.60010
[32] Suzuki, T.: On Downing-Kirk's theorem. J. Math. Anal. Appl. 286 (2003), 2, 453-458. DOI 10.1016/s0022-247x(03)00470-0 | MR 2008843 | Zbl 1042.47036
[33] Suzuki, T.: Generalized Caristi's fixed point theorems by Bae and others. J. Math. Anal. Appl. 302 (2005), 2, 502-508. DOI 10.1016/j.jmaa.2004.08.019 | MR 2107850 | Zbl 1059.54031
[34] Suzuki, T., Takahashi, W.: Fixed point theorems and characterizations of metric completeness. Topol. Methods Nonlinear Anal. 8 (1997), 2, 371-382. DOI 10.12775/TMNA.1996.040 | MR 1483635 | Zbl 0902.47050
[35] Takahashi, W.: Existence theorems generalizing fixed point theorems for multivalued mappings. In: Fixed Point Theory and Aplications Marseille, 1989), Pitman Res. Notes Math. Ser. 252, Longman Sci. Tech., Harlow 1991, pp. 397-406. MR 1122847 | Zbl 0760.47029
[36] Takahashi, W.: Nonlinear functional analysis. Yokohama Publishers, Yokohama 2000. MR 1864294 | Zbl 0997.47002
[37] Zhu, J., Zhong, C.-K., Wang, G.-P.: An extension of ekeland's variational principle in fuzzy metric space and its applications. Fuzzy Sets and Systems 108 (1999), 3, 353-363. DOI 10.1016/s0165-0114(97)00333-3 | MR 1718330 | Zbl 0946.49017
Partner of
EuDML logo