[1] Bertsekas, D. P., Tsitsiklis, J. N.:
Neuro-Dynamic Programming. Athena Scientific, Belmont 1996.
Zbl 0924.68163
[3] Evans, L. C.:
Partial Differential Equations. Second edition. American Math Society, 2010.
MR 2597943
[6] Gharesifard, B., Cortes, J.:
Distributed continuous-time convex optimization on weight-balanced digraphs. IEEE Trans. Automat. Control 59 (2014), 781-786.
DOI 10.1109/tac.2013.2278132 |
MR 3188487
[7] Golshtein, F. G., Yakov, N. V.:
Modified Lagrangians and Moonotone Maps in Optimization. Wiley, New York 1996.
MR 1386892
[8] Kushner, K. J.:
Approximation and Weak Convergence Methods for Random Processes with Applications to Stochastic Systems Theory. The MIT Press, London 1984.
MR 0741469 |
Zbl 0551.60056
[9] Liu, S., Qiu, Z., Xie, L.:
Continuous-time distributed convex optimization with set constraints. In: Proc. 19th IFAC World Congress, Cape Town 2014, pp. 9762-9767.
DOI 10.3182/20140824-6-za-1003.01377
[10] Liu, Q., Wang, J.:
A second-order multi-agent network for bounded-constrained distributed optimization. IEEE Trans. Automat. Control 60 (2015), 3310-3315.
DOI 10.1109/TAC.2015.2416927 |
MR 3432700
[12] Lu, J., Tang, C. Y.:
Zero-gradient-sum algorithms for distributed convex: the continuous-time case. IEEE Trans. Automat. Control 57 (2012), 2348-2354.
DOI 10.1109/tac.2012.2184199 |
MR 2968790
[13] Mateos-Nunez, D., Cortes, J.:
Noise-to-state exponential stable distributed convex optimization on weight-balanced digraphs. SIAM J.n Control Optim. 54 (2016), 266-290.
DOI 10.1137/140978259 |
MR 3458152
[15] Nedic, A., Ozdaglar, A., Parrilo, P. A.:
Constained consensus and optimization in multi-agent networks. IEEE Trans. Automat. Control 55 (2010), 922-938.
DOI 10.1109/tac.2010.2041686 |
MR 2654432
[16] Pavliotis, G. V., Stuart, A. M.:
Multiscale methods: averaging and homogenization. Springer-Verlag, New York 2008.
MR 2382139 |
Zbl 1160.35006
[17] Ni, W., Wang, Xiaoli, Xiong, Chun:
Leader-following consensus of multiple linear systems under switching topologies: an averaging method. Kybernetika 48 (2012), 1194-1210.
MR 3052881 |
Zbl 1255.93069
[20] Nowak, R. D.:
Distributed EM algorithms for density estimation and clustering in sensor networks. IEEE Trans. Signal Process. 51 (2003), 2245-2253.
DOI 10.1109/tsp.2003.814623
[22] Touri, B., Gharesifard, B.:
Continuous-time distributed convex optimization on time-varying directed networks. In: 54th IEEE Conference on Decision and Control, Osaka 2015, pp. 724-729.
DOI 10.1109/cdc.2015.7402315
[23] Wang, J., Elia, N.:
Control approach to distributed optimization. In: 48th Annual Allerton Conference on Communication, Control, and Computing 2010, pp. 557-561.
DOI 10.1109/allerton.2010.5706956
[24] Wang, J., Elia, N.: A control perspective for centralized and distributed convex optimization. In: 50th IEEE Conference on Decision and Control and European Control Conference, Orlando 2011, pp. 3800-3805.
[26] Yi, P., Zhang, Y., Hong, Y.:
Potential game design for a class of distributed optimisation problems. J. Control Decision 1 (2014), 166-179.
DOI 10.1080/23307706.2014.899111
[28] Yi, P., Hong, Y., Liu, F.:
Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and its application to economic dispatch of power systems. Automatica 74 (2016), 259-269.
DOI 10.1016/j.automatica.2016.08.007 |
MR 3569392
[29] Zeng, X., Yi, P., Hong, Y.: Distributed continuous-time algorithm for constrained convex optimizations via nonsmooth analysis approach. arXiv:1510.07386v2, 2016.