Previous |  Up |  Next

Article

Keywords:
Navier-Stokes equation; finite element method; variational multiscale; two local Gauss integrations; error correction method
Summary:
A new error correction method for the stationary Navier-Stokes equations based on two local Gauss integrations is presented. Applying the orthogonal projection technique, we introduce two local Gauss integrations as a stabilizing term in the error correction method, and derive a new error correction method. In both the coarse solution computation step and the error computation step, a locally stabilizing term based on two local Gauss integrations is introduced. The stability and convergence of the new error correction algorithm are established. Numerical examples are also presented to verify the theoretical analysis and demonstrate the efficiency of the proposed method.
References:
[1] Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics 15, Springer, New York (2008). DOI 10.1007/978-0-387-75934-0 | MR 2373954 | Zbl 1135.65042
[2] Erturk, E., Corke, T. C., Gökçöl, C.: Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Int. J. Numer. Methods Fluids 48 (2005), 747-774. DOI 10.1002/fld.953 | Zbl 1071.76038
[3] Ervin, V. J., Layton, W. J., Maubach, J. M.: Adaptive defect-correction methods for viscous incompressible flow problems. SIAM J. Numer. Anal. 37 (2000), 1165-1185. DOI 10.1137/S0036142997318164 | MR 1756420 | Zbl 1049.76038
[4] Gartling, D. K.: A test problem for outflow boundary conditions---flow over a backward-facing step. Int. J. Numer. Methods Fluids 11 (1990), 953-967. DOI 10.1002/fld.1650110704
[5] Ghia, U., Ghia, K. N., Shin, C. T.: High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys. 48 (1982), 387-411. DOI 10.1016/0021-9991(82)90058-4 | Zbl 0511.76031
[6] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer Series in Computational Mathematics 5, Springer, Berlin (1986). DOI 10.1007/978-3-642-61623-5 | MR 0851383 | Zbl 0585.65077
[7] Gresho, P. M., Lee, R. L., Chan, S. T., Sani, R. L.: Solution of the time-dependent incompressible Navier-Stokes and Boussinesq equations using the Galerkin finite element method. Approximation Methods for Navier-Stokes Problems, Proc. Symp. IUTAM, Paderborn 1979 Lect. Notes in Math. 771, Springer, Berlin (1980), 203-222. DOI 10.1007/BFb0086908 | MR 0565998 | Zbl 0428.76026
[8] Guermond, J.-L., Marra, A., Quartapelle, L.: Subgrid stabilized projection method for 2D unsteady flows at high Reynolds numbers. Comput. Methods Appl. Mech. Eng. 195 (2006), 5857-5876. DOI 10.1016/j.cma.2005.08.016 | MR 2250923 | Zbl 1121.76036
[9] Gunzburger, M. D.: Finite Element Methods for Viscous Incompressible Flows. A Guide to Theory, Practice, and Algorithms. Computer Science and Scientific Computing, Academic Press, Boston (1989). MR 1017032 | Zbl 0697.76031
[10] He, Y., Li, J.: Convergence of three iterative methods based on the finite element discretization for the stationary Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 198 (2009), 1351-1359. DOI 10.1016/j.cma.2008.12.001 | MR 2497612 | Zbl 1227.76031
[11] He, Y., Wang, A., Mei, L.: Stabilized finite-element method for the stationary Navier-Stokes equations. J. Eng. Math. 51 (2005), 367-380. DOI 10.1007/s10665-004-3718-5 | MR 2146399 | Zbl 1069.76031
[12] Hecht, F.: New development in freefem++. J. Numer. Math. 20 (2012), 251-265. DOI 10.1515/jnum-2012-0013 | MR 3043640 | Zbl 1266.68090
[13] Huang, P., Feng, X., He, Y.: Two-level defect-correction Oseen iterative stabilized finite element methods for the stationary Navier-Stokes equations. Appl. Math. Modelling 37 (2013), 728-741. DOI 10.1016/j.apm.2012.02.051 | MR 3002184 | Zbl 1351.76060
[14] Huang, P., He, Y., Feng, X.: A new defect-correction method for the stationary Navier-Stokes equations based on local Gauss integration. Math. Methods Appl. Sci. 35 (2012), 1033-1046. DOI 10.1002/mma.1618 | MR 2931209 | Zbl 1246.76054
[15] Hughes, T. J. R., Mazzei, L., Jansen, K. E.: Large eddy simulation and the variational multiscale method. Comput. Vis. Sci. 3 (2000), 47-59. DOI 10.1007/s007910050051 | Zbl 0998.76040
[16] John, V., Kaya, S.: A finite element variational multiscale method for the Navier-Stokes equations. SIAM J. Sci. Comput. 26 (2005), 1485-1503. DOI 10.1137/030601533 | MR 2142582 | Zbl 1073.76054
[17] Kaya, S., Rivière, B.: A two-grid stabilization method for solving the steady-state Navier-Stokes equations. Numer. Methods Partial Differ. Equations 22 (2006), 728-743. DOI 10.1002/num.20120 | MR 2212234 | Zbl 1089.76034
[18] Labovschii, A.: A defect correction method for the time-dependent Navier-Stokes equations. Numer. Methods Partial Differ. Equations 25 (2009), 1-25. DOI 10.1002/num.20329 | MR 2473678 | Zbl 05490411
[19] Layton, W.: A connection between subgrid scale eddy viscosity and mixed methods. Appl. Math. Comput. 133 (2002), 147-157. DOI 10.1016/S0096-3003(01)00228-4 | MR 1923189 | Zbl 1024.76026
[20] Layton, W., Lee, H. K., Peterson, J.: A defect-correction method for the incompressible Navier-Stokes equations. Appl. Math. Comput. 129 (2002), 1-19. DOI 10.1016/S0096-3003(01)00026-1 | MR 1897318 | Zbl 1074.76033
[21] Li, J., He, Y.: A stabilized finite element method based on two local Gauss integrations for the Stokes equations. J. Comput. Appl. Math. 214 (2008), 58-65. DOI 10.1016/j.cam.2007.02.015 | MR 2391672 | Zbl 1132.35436
[22] Li, Y., Mei, L., Li, Y., Zhao, K.: A two-level variational multiscale method for incompressible flows based on two local Gauss integrations. Numer. Methods Partial Differ. Equations 29 (2013), 1986-2003. DOI 10.1002/num.21785 | MR 3116554 | Zbl 1277.76019
[23] Liu, Q., Hou, Y.: A two-level defect-correction method for Navier-Stokes equations. Bull. Aust. Math. Soc. 81 (2010), 442-454. DOI 10.1017/S0004972709000859 | MR 2639859 | Zbl 05712510
[24] Melhem, H. G.: Finite element approximation to heat transfer through construction glass blocks. Mechanics Computing in 1990's and Beyond American Society of Civil Engineers (1991), 193-197.
[25] Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis. Studies in Mathematics and Its Applications 2, North-Holland, Amsterdam (1984). MR 0769654 | Zbl 0568.35002
[26] Wang, K., Wong, Y. S.: Error correction method for Navier-Stokes equations at high Reynolds numbers. J. Comput. Phys. 255 (2013), 245-265. DOI 10.1016/j.jcp.2013.07.042 | MR 3109787 | Zbl 1349.76281
[27] Wong, K. L., Baker, A. J.: A 3D incompressible Navier-Stokes velocity-vorticity weak form finite element algorithm. Int. J. Numer. Methods Fluids 38 (2002), 99-123. DOI 10.1002/fld.204 | Zbl 1009.76059
[28] Zheng, H., Hou, Y., Shi, F., Song, L.: A finite element variational multiscale method for incompressible flows based on two local Gauss integrations. J. Comput. Phys. 228 (2009), 5961-5977. DOI 10.1016/j.jcp.2009.05.006 | MR 2542923 | Zbl 1168.76028
[29] Zienkiewicz, O. C., Taylor, R. L.: The Finite Element Method for Solid and Structural Mechanics. Elsevier/Butterworth Heinemann, Amsterdam (2005). DOI 10.1016/B978-075066431-8.50166-1 | MR 3292651 | Zbl 1084.74001
Partner of
EuDML logo