Previous |  Up |  Next

Article

Keywords:
particle filter; kernel methods; Fourier analysis
Summary:
The paper deals with kernel density estimates of filtering densities in the particle filter. The convergence of the estimates is investigated by means of Fourier analysis. It is shown that the estimates converge to the theoretical filtering densities in the mean integrated squared error. An upper bound on the convergence rate is given. The result is provided under a certain assumption on the Sobolev character of the filtering densities. A sufficient condition is presented for the persistence of this Sobolev character over time.
References:
[1] Brabec, J., Hrůza, B.: Matematická analýza II (Mathematical Analysis II, in Czech). SNTL/ALFA, 1986.
[2] Crisan, D., Doucet, A.: A survey of convergence results on particle filtering methods for practitioners. IEEE Trans. Signal Processing 50 (2002), 3, 736-746. DOI 10.1109/78.984773 | MR 1895071
[3] Crisan, D., Míguez, J.: Particle-kernel estimation of the filter density in state-space models. Bernoulli 20 (2014), 4, 1879-1929. DOI 10.3150/13-bej545 | MR 3263093 | Zbl 1346.60112
[4] Doucet, A., Freitas, N. de, (Eds.), N. Gordon: Sequential Monte Carlo Methods in Practice. Springer-Verlag, New York 2001. DOI 10.1007/978-1-4757-3437-9 | MR 1847783 | Zbl 0967.00022
[5] Doucet, A., Johansen, A. M.: A tutorial on particle filtering and smoothing: fifteen years later. In: The Oxford Handbook of Nonlinear Filtering (D. Crisan and B. Rozovskii, eds.), Oxford University Press, 2011.
[6] Fristedt, B., Jain, N., Krylov, N.: Filtering and Prediction: A Primer. American Mathematical Society, 2007. DOI 10.1090/stml/038 | MR 2337747 | Zbl 1165.62070
[7] Givens, G. H.: Consistency of the local kernel density estimator. Statist. Probab. Lett. 25 (1995), 55-61. DOI 10.1016/0167-7152(94)00205-m | MR 1364818 | Zbl 0838.62026
[8] Heine, K., Crisan, D.: Uniform approximations of discrete-time filters. Adv. Appl. Probab. 40 (2008), 4, 979-1001. DOI 10.1239/aap/1231340161 | MR 2488529 | Zbl 1155.93039
[9] Hürzeler, M., Künsch, H. R.: Monte Carlo approximations for general state-space models. J. Comput. Graph. Statist. 7 (1998), 2, 175-193. DOI 10.2307/1390812 | MR 1649366
[10] Künsch, H. R.: Recursive Monte Carlo filters: Algorithms and theoretical bounds. Ann. Statist. 33 (2005), 5, 1983-2021. DOI 10.1214/009053605000000426 | MR 2211077
[11] Gland, F. Le, Oudjane, N.: Stability and uniform approximation of nonlinear filters using the Hilbert metric and application to particle filters. Ann. Appl. Probab. 14 (2004), 1, 144-187. DOI 10.1214/aoap/1075828050 | MR 2023019 | Zbl 1060.93094
[12] Moral, P. Del, Guionnet, A.: On the stability of interacting processes with applications to filtering and genetic algorithms. Annales de l'institut Henri Poincaré (B) Probabilités et Statistiques 37 (2001), 2, 155-194. DOI 10.1016/s0246-0203(00)01064-5 | MR 1819122
[13] Musso, C., Oudjane, N., Gland, F. Le: Improving regularised particle filters. In: Sequential Monte Carlo Methods in Practice (A. Doucet, N. Freitas, and N. Gordon, eds.), Chapter 12, Springer 2001, pp. 247-272. DOI 10.1007/978-1-4757-3437-9_12 | MR 1847795 | Zbl 1056.93588
[14] Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Statist. 33 (1962), 3, 1065-1076. DOI 10.1214/aoms/1177704472 | MR 0143282 | Zbl 0116.11302
[15] Särkkä, S.: Bayesian Filtering and Smoothing. Cambridge University Press, 2013. MR 3154309 | Zbl 1274.62021
[16] Silverman, B. W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall/CRC, London, New York 1986. DOI 10.1007/978-1-4899-3324-9 | MR 0848134 | Zbl 0617.62042
[17] Tsybakov, A. B.: Introduction to Nonparametric Estimation. Springer, 2009. DOI 10.1007/b13794 | MR 2724359 | Zbl 1176.62032
[18] Wand, M. P., Jones, M. C.: Kernel Smoothing. Chapman and Hall/CRC, London, New York 1995. DOI 10.1007/978-1-4899-4493-1 | MR 1319818 | Zbl 0854.62043
Partner of
EuDML logo