[2] Arhangel'skii, A. V., Ludwig, L.:
On $\alpha$-normal and $\beta$-normal spaces. Commentat. Math. Univ. Carol. 42 (2001), 507-519.
MR 1860239 |
Zbl 1053.54030
[3] Das, A. K.:
Simultaneous generalizations of regularity and normality. Eur. J. Pure Appl. Math. 4 (2011), 34-41.
MR 2770026 |
Zbl 1213.54031
[5] Das, A. K., Bhat, P.:
A class of spaces containing all densely normal spaces. Indian J. Math. 57 (2015), 217-224.
MR 3362716 |
Zbl 1327.54027
[6] Das, A. K., Bhat, P., Tartir, J. K.:
On a simultaneous generalization of $\beta$-normality and almost $\beta$-normality. (to appear) in Filomat.
MR 3439956
[8] Kohli, J. K., Das, A. K.:
New normality axioms and decompositions of normality. Glas. Mat. Ser. (3) 37 (2002), 163-173.
MR 1918103 |
Zbl 1042.54014
[13] Murtinová, E.:
A $\beta$-normal Tychonoff space which is not normal. Commentat. Math. Univ. Carol. 43 (2002), 159-164.
MR 1903315 |
Zbl 1090.54016
[14] Singal, M. K., Arya, S. P.:
Almost normal and almost completely regular spaces. Glas. Mat. Ser. (3) 5 (25) (1970), 141-152.
MR 0275354 |
Zbl 0197.18901
[15] Singal, M. K., Singal, A. R.:
Mildly normal spaces. Kyungpook Math. J. 13 (1973), 27-31.
MR 0362215 |
Zbl 0266.54006
[16] Ščepin, E. V.:
Real functions, and spaces that are nearly normal. Sibirsk. Mat. Ž. 13 (1972), 1182-1196, 1200 Russian.
MR 0326656
[17] L. A. Steen, J. A. Seebach, Jr.:
Counterexamples in Topology. Springer, New York (1978).
MR 0507446 |
Zbl 0386.54001
[18] Veličko, N. V.:
{$H$}-closed topological spaces. Mat. Sb. (N.S.) 70 (112) (1966), Russian 98-112.
MR 0198418