Previous |  Up |  Next

Article

Keywords:
dihedral group; Moufang loop; cyclic extension; semidirect product
Summary:
This paper completely solves the isomorphism problem for Moufang loops $Q = GC$ where $G\unlhd Q$ is a noncommutative group with cyclic subgroup of index two and $|Z(G)| \le 2$, $C$ is cyclic, $G\cap C = 1$, and $Q$ is finite of order coprime to three.
References:
[1] Chein O.: Moufang loops of small order, I. Trans. Amer. Math. Soc. 188 (1974), 31–51. DOI 10.1090/S0002-9947-1974-0330336-3 | MR 0330336 | Zbl 0286.20088
[2] Chein O.: Moufang loops of small order. Mem. Amer. Math. Soc. 13 (1978), no. 197. MR 0466391 | Zbl 0378.20053
[3] Drápal A.: On extensions of Moufang loops by a cyclic factor that is coprime to three. Comm. Algebra, (in print) http://dx.doi.org/10.1080/00927872.2016.1233202 DOI 10.1080/00927872.2016.1233202
[4] Gagola S.M., III: Cyclic extensions of Moufang loops induced by semi-automorphisms. J. Algebra Appl. 13 (2014), no. 4, Article ID 1350128. DOI 10.1142/S0219498813501284 | MR 3153863 | Zbl 1296.20028
[5] Gagola S.hM., III: Describing cyclic extensions of Bol loops. Quasigroups and Related Systems 23 (2015), 31–39. MR 3353111 | Zbl 1328.20084
[6] Goodaire E.R., May S., Raman M.: The Moufang Loops of Order Less Than 64. Nova Science Publishers, Inc., Commack, NY, 1999. MR 1689624 | Zbl 0964.20043
Partner of
EuDML logo