Previous |  Up |  Next

Article

Keywords:
contact manifold; sub-Riemannian geometry; partial connection; pseudo-Hermitian geometry
Summary:
We construct a canonically defined affine connection in sub-Riemannian contact geometry. Our method mimics that of the Levi-Civita connection in Riemannian geometry. We compare it with the Tanaka-Webster connection in the three-dimensional case.
References:
[1] Agrachev, A.A., Barilari, D., Rizzi, L.: Sub-Riemannian curvature in contact geometry. to appear in J. Geom. Anal.
[2] Agrachev, A.A., Zelenko, I.: Geometry of Jacobi curves I. J. Dynam. Control Systems 8 (1) (2002), 93–140. DOI 10.1023/A:1013904801414 | MR 1874705 | Zbl 1019.53038
[3] Barilari, D., Rizzi, L.: On Jacobi fields and canonical connection in sub-Riemannian geometry. arXiv:1506.01827.
[4] Bryant, R.L., Eastwood, M.G., Gover, A.R., Neusser, K.: Some differential complexes within and beyond parabolic geometry. arXiv:1112.2142.
[5] Čap, A., Slovák, J.: Parabolic Geometries I: Background and General Theory. Surveys and Monographs, vol. 154, Amer. Math. Soc., 2009. DOI 10.1090/surv/154 | MR 2532439 | Zbl 1183.53002
[6] Eastwood, M.G., Gover, A.R.: Prolongation on contact manifolds. Indiana Univ. Math. J. 60 (2011), 1425–1486. DOI 10.1512/iumj.2011.60.4980 | MR 2996997
[7] Falbel, E., Gorodski, C., Veloso, J.M.: Conformal sub-Riemannian geometry in dimension 3. Mat. Contemp. 9 (1995), 61–73. MR 1378673 | Zbl 0859.53021
[8] Morimoto, T.: Cartan connection associated with a subriemannian structure. Differential Geom. Appl. 26 (2008), 75–78. DOI 10.1016/j.difgeo.2007.12.002 | MR 2393974 | Zbl 1147.53027
[9] Rumin, M.: Un complexe de formes différentielles sur les variétés de contact. Comptes Rendus Acad. Sci. Paris Math. 310 (1990), 401–404. MR 1046521 | Zbl 0694.57010
[10] Tanaka, N.: A differential geometric study on strongly pseudo-convex manifolds. Lectures in Mathematics, Kyoto University, Kinokuniya, 1975. MR 0399517 | Zbl 0331.53025
[11] Webster, S.M.: Pseudo-Hermitian structures on a real hypersurface. J. Differential Geom. 13 (1978), 25–41. DOI 10.4310/jdg/1214434345 | MR 0520599 | Zbl 0379.53016
[12] Zelenko, I., Li, C.: Differential geometry of curves in Lagrange Grassmannians with given Young diagram. Differential Geom. Appl. 27 (2009), 723–742. DOI 10.1016/j.difgeo.2009.07.002 | MR 2552681 | Zbl 1177.53020
Partner of
EuDML logo