Previous |  Up |  Next

Article

Keywords:
Lie algebra; $\rm SCAP$-subalgebra; chief series; solvable; supersolvable
Summary:
A subalgebra $H$ of a finite dimensional Lie algebra $L$ is said to be a $\rm SCAP$-subalgebra if there is a chief series $0=L_0\subset L_1\subset \ldots \subset L_t=L$ of $L$ such that for every $i=1,2,\ldots ,t$, we have $H+L_i=H+L_{i-1}$ or $H\cap L_i=H\cap L_{i-1}$. This is analogous to the concept of $\rm SCAP$-subgroup, which has been studied by a number of authors. In this article, we investigate the connection between the structure of a Lie algebra and its $\rm SCAP$-subalgebras and give some sufficient conditions for a Lie algebra to be solvable or supersolvable.
References:
[1] Ballester-Bolinches, A., Ezquerro, L. M., Skiba, A. N.: On second maximal subgroups of Sylow subgroups of finite groups. J. Pure Appl. Algebra 215 (2011), 705-714. DOI 10.1016/j.jpaa.2010.06.020 | MR 2738383 | Zbl 1223.20012
[2] Barnes, D. W.: On Cartan subalgebras of Lie algebras. Math. Z. 101 (1967), 350-355. DOI 10.1007/BF01109800 | MR 0220785 | Zbl 0166.04103
[3] Barnes, D. W.: On the cohomology of soluble Lie algebras. Math. Z. 101 (1967), 343-349. DOI 10.1007/BF01109799 | MR 0220784 | Zbl 0166.04102
[4] Borel, A., Mostow, G. D.: On semi-simple automorphisms of Lie algebras. Ann. Math. (2) 61 (1955), 389-405. DOI 10.2307/1969807 | MR 0068531 | Zbl 0066.02401
[5] Fan, Y., Guo, X. Y., Shum, K. P.: Remarks on two generalizations of normality of subgroups. Chin. Ann. Math. Ser. A 27 (2006), 169-176. MR 2239430 | Zbl 1109.20017
[6] Graaf, W. A.: Lie Algebras: Theory and Algorithms. North-Holland Mathematical Library 56 North-Holland, Amsterdam (2000). MR 1743970 | Zbl 1122.17300
[7] Guo, X., Wang, J., Shum, K. P.: On semi-cover-avoiding maximal subgroups and solvability of finite groups. Comm. Algebra 34 (2006), 3235-3244. DOI 10.1080/00927870600778381 | MR 2252668 | Zbl 1106.20013
[8] Hallahan, C. B., Overbeck, J.: Cartan subalgebras of meta-nilpotent Lie algebras. Math. Z. 116 (1970), 215-217. DOI 10.1007/BF01110075 | MR 0277580 | Zbl 0202.04102
[9] Li, Y., Miao, L., Wang, Y.: On semi cover-avoiding maximal subgroups of Sylow subgroups of finite groups. Commun. Algebra 37 (2009), 1160-1169. DOI 10.1080/00927870802465837 | MR 2510976 | Zbl 1175.20015
[10] Salemkar, A. R., Chehrazi, S., Tayanloo, F.: Characterizations for supersolvable Lie algebras. Commun. Algebra 41 (2013), 2310-2316. DOI 10.1080/00927872.2012.658482 | MR 3225276 | Zbl 1307.17017
[11] Stitzinger, E. L.: On the Frattini subalgebra of a Lie algebra. J. Lond. Math. Soc. 2 (1970), 429-438. DOI 10.1112/jlms/2.Part_3.429 | MR 0263885 | Zbl 0201.03603
[12] Stitzinger, E. L.: Covering-avoidance for saturated formations of solvable Lie algebras. Math. Z. 124 (1972), 237-249. DOI 10.1007/BF01110802 | MR 0297829 | Zbl 0215.38601
[13] Towers, D.: Lie algebras all of whose maximal subalgebras have codimension one. Proc. Edinb. Math. Soc. (2) 24 (1981), 217-219. DOI 10.1017/S0013091500016540 | MR 0633723 | Zbl 0466.17007
[14] Towers, D. A.: c-ideals of Lie algebras. Commun. Algebra 37 (2009), 4366-4373. DOI 10.1080/00927870902829023 | MR 2588856 | Zbl 1239.17006
[15] Towers, D. A.: Subalgebras that cover or avoid chief factors of Lie algebras. Proc. Am. Math. Soc. 143 (2015), 3377-3385. DOI 10.1090/S0002-9939-2015-12533-6 | MR 3348780
Partner of
EuDML logo