Previous |  Up |  Next

Article

Keywords:
contact vector field; cohomology of groups; group of contactomorphisms; super-Schwarzian derivative; invariant differential operator
Summary:
The relative cohomology ${\rm H}^1_{\rm diff}(\mathbb {K}(1|3),\mathfrak {osp}(2,3);{\mathcal {D}}_{\lambda ,\mu }(S^{1|3}))$ of the contact Lie superalgebra $\mathbb {K}(1|3)$ with coefficients in the space of differential operators ${\mathcal {D}}_{\lambda ,\mu }(S^{1|3})$ acting on tensor densities on $S^{1|3}$, is calculated in {N. Ben Fraj, I. Laraied, S. Omri} (2013) and the generating $1$-cocycles are expressed in terms of the infinitesimal super-Schwarzian derivative $1$-cocycle $s(X_f)=D_1D_2D_3(f)\alpha _3^{1/2}$, $X_f\in \mathbb {K}(1|3)$ which is invariant with respect to the conformal subsuperalgebra $\mathfrak {osp}(2,3)$ of $\mathbb {K}(1|3)$. \endgraf In this work we study the supergroup case. We give an explicit construction of $1$-cocycles of the group of contactomorphisms ${\mathcal {K}}(1|3)$ on the supercircle $S^{1|3}$ generating the relative cohomology ${\rm H}^1_{\rm diff}({\mathcal {K}}(1|3)$, ${\rm PC}(2,3)$; ${\mathcal {D}}_{{\lambda },\mu }(S^{1|3})$ with coefficients in ${\mathcal {D}}_{{\lambda },\mu }(S^{1|3})$. We show that they possess properties similar to those of the super-Schwarzian derivative $1$-cocycle $S_{3}(\Phi )=E_{\Phi }^{-1}(D_{1}(D_{2}),D_{3})\alpha _{3}^{1/2}$, $\Phi \in {\mathcal {K}}(1|3)$ introduced by Radul which is invariant with respect to the conformal group ${\rm PC}(2,3)$ of ${\mathcal {K}}(1|3)$. These cocycles are expressed in terms of $S_{3}(\Phi )$ and possess its properties.
References:
[1] Agrebaoui, B., Dammak, O., Mansour, S.: $1$-cocycle on the group of contactomorphisms on the suppercircles $S^{1|1}$ and $S^{1|2}$ generalizing the Schwarzian derivative. J. Geom. Phys. 75 (2014), 230-247. DOI 10.1016/j.geomphys.2013.10.003 | MR 3126945
[2] Agrebaoui, B., Mansour, S.: On the cohomology of the Lie superalgebra of contact vector fields on $S^{1| m}$. Comm. Algebra 38 (2010), 382-404. DOI 10.1080/00927870903357735 | MR 2597503 | Zbl 1191.17005
[3] Basdouri, I., Ammar, M. Ben, Fraj, N. Ben, Boujelbane, M., Kammoun, K.: Cohomology of the Lie superalgebra of contact vector fields on $\mathbb{R}^{1|1}$ and deformations of the superspace of symbols. J. Nonlinear Math. Phys. 16 (2009), 373-409. DOI 10.1142/S1402925109000431 | MR 2606126
[4] Fraj, N. Ben: Cohomology of ${\cal K}(2)$ acting on linear differential operators on the superspace $\mathbb R^{1|2}$. Lett. Math. Phys. 86 (2008), 159-175. DOI 10.1007/s11005-008-0283-2 | MR 2465752
[5] Fraj, N. Ben, Laraied, I., Omri, S.: Supertransvectants, cohomology and deformations. J. Math. Phys. 54 (2013), 023501, 19 pages. MR 3076388
[6] Bernstein, J., Leites, D., Molotkov, V., Shander, V.: Seminar on Supersymmetry (v. 1. Algebra and Calcuculus: Main chapters). D. Leites Moscow Center for Continuous Mathematical Education Moskva (2011), Russian.
[7] Bouarroudj, S.: Remarks on the Schwarzian derivatives and the invariant quantization by means of a Finsler function. Indag. Math. 15 (2004), 321-338. DOI 10.1016/S0019-3577(04)80002-8 | MR 2093162 | Zbl 1064.53060
[8] Bouarroudj, S., Ovsienko, V.: Three cocycles on $ Diff (S^1)$ generalizing the Schwarzian derivative. Int. Math. Res. Not. 1998 (1998), 25-39. DOI 10.1155/S1073792898000038 | MR 1601874 | Zbl 0919.57026
[9] Bouarroudj, S., Ovsienko, V.: Riemannian curl in contact geometry. Int. Math. Res. Not. 12 (2015), 3917-3942. MR 3356744 | Zbl 1330.53105
[10] Cartan, É.: Leçons sur la Théorie des Espaces à Connexion Projective. French Paris Gauthier-Villars (Cahiers scientifiques, fasc. XVII) (1937). Zbl 0016.07603
[11] Conley, C. H.: Conformal symbols and the action of contact vector fields over the superline. J. Reine Angew. Math. 633 (2009), 115-163. MR 2561198 | Zbl 1248.17017
[12] Fuks, D. B.: Cohomology of Infinite-Dimensional Lie Algebras. Contemporary Soviet Mathematics Consultants Bureau, New York (1986). MR 0874337 | Zbl 0667.17005
[13] Gargoubi, H., Mellouli, N., Ovsienko, V.: Differential operators on supercircle: conformally equivariant quantization and symbol calculus. Lett. Math. Phys. (2007), 79 51-65. DOI 10.1007/s11005-006-0129-8 | MR 2290336 | Zbl 1112.53066
[14] Gargoubi, H., Ovsienko, V.: Supertransvectants and symplectic geometry. Int. Math. Res. Notices 2008 Article ID rnn021, 19 pages (2008). MR 2429252 | Zbl 1144.53100
[15] Lecomte, P. B. A., Ovsienko, V. Yu.: Projectively equivariant symbol calculus. Lett. Math. Phys. 49 (1999), 173-196. DOI 10.1023/A:1007662702470 | MR 1743456 | Zbl 0989.17015
[16] Manin, Yu. I.: Gauge Fields and Complex Geometry. Nauka Moskva (1984), Russian. MR 0787979 | Zbl 0576.53002
[17] Michel, J.-P., Duval, C.: On the projective geometry of the supercircle: a unified construction of the super cross-ratio and Schwarzian derivative. Int. Math. Res. Not. 2008 (2008), Article ID rnn054, 47 pages. MR 2440332 | Zbl 1145.53005
[18] Ovsienko, V.: Lagrange Schwarzian derivative and symplectic Sturm theory. Ann. Fac. Sci. Toulouse, VI. Sér., Math. 2 6 (1993), 73-96. DOI 10.5802/afst.758 | MR 1230706 | Zbl 0780.34004
[19] Ovsienko, V., Tabachnikov, S.: Projective Differential Geometry Old and New. From the Schwarzian Derivative to the Cohomology of Diffeomorphism Groups. Cambridge Tracts in Mathematics 165 Cambridge University Press, Cambridge (2005). MR 2177471 | Zbl 1073.53001
[20] Radul, A. O.: Superstring Schwarz derivative and Bott cocycles. Integrable and Superintegrable Systems 336-351 World. Sci. Publ. Teaneck B. Kupershmidt (1990). MR 1091271
Partner of
EuDML logo