[1] Agrebaoui, B., Dammak, O., Mansour, S.:
$1$-cocycle on the group of contactomorphisms on the suppercircles $S^{1|1}$ and $S^{1|2}$ generalizing the Schwarzian derivative. J. Geom. Phys. 75 (2014), 230-247.
DOI 10.1016/j.geomphys.2013.10.003 |
MR 3126945
[3] Basdouri, I., Ammar, M. Ben, Fraj, N. Ben, Boujelbane, M., Kammoun, K.:
Cohomology of the Lie superalgebra of contact vector fields on $\mathbb{R}^{1|1}$ and deformations of the superspace of symbols. J. Nonlinear Math. Phys. 16 (2009), 373-409.
DOI 10.1142/S1402925109000431 |
MR 2606126
[4] Fraj, N. Ben:
Cohomology of ${\cal K}(2)$ acting on linear differential operators on the superspace $\mathbb R^{1|2}$. Lett. Math. Phys. 86 (2008), 159-175.
DOI 10.1007/s11005-008-0283-2 |
MR 2465752
[5] Fraj, N. Ben, Laraied, I., Omri, S.:
Supertransvectants, cohomology and deformations. J. Math. Phys. 54 (2013), 023501, 19 pages.
MR 3076388
[6] Bernstein, J., Leites, D., Molotkov, V., Shander, V.: Seminar on Supersymmetry (v. 1. Algebra and Calcuculus: Main chapters). D. Leites Moscow Center for Continuous Mathematical Education Moskva (2011), Russian.
[9] Bouarroudj, S., Ovsienko, V.:
Riemannian curl in contact geometry. Int. Math. Res. Not. 12 (2015), 3917-3942.
MR 3356744 |
Zbl 1330.53105
[10] Cartan, É.:
Leçons sur la Théorie des Espaces à Connexion Projective. French Paris Gauthier-Villars (Cahiers scientifiques, fasc. XVII) (1937).
Zbl 0016.07603
[11] Conley, C. H.:
Conformal symbols and the action of contact vector fields over the superline. J. Reine Angew. Math. 633 (2009), 115-163.
MR 2561198 |
Zbl 1248.17017
[12] Fuks, D. B.:
Cohomology of Infinite-Dimensional Lie Algebras. Contemporary Soviet Mathematics Consultants Bureau, New York (1986).
MR 0874337 |
Zbl 0667.17005
[14] Gargoubi, H., Ovsienko, V.:
Supertransvectants and symplectic geometry. Int. Math. Res. Notices 2008 Article ID rnn021, 19 pages (2008).
MR 2429252 |
Zbl 1144.53100
[17] Michel, J.-P., Duval, C.:
On the projective geometry of the supercircle: a unified construction of the super cross-ratio and Schwarzian derivative. Int. Math. Res. Not. 2008 (2008), Article ID rnn054, 47 pages.
MR 2440332 |
Zbl 1145.53005
[19] Ovsienko, V., Tabachnikov, S.:
Projective Differential Geometry Old and New. From the Schwarzian Derivative to the Cohomology of Diffeomorphism Groups. Cambridge Tracts in Mathematics 165 Cambridge University Press, Cambridge (2005).
MR 2177471 |
Zbl 1073.53001
[20] Radul, A. O.:
Superstring Schwarz derivative and Bott cocycles. Integrable and Superintegrable Systems 336-351 World. Sci. Publ. Teaneck B. Kupershmidt (1990).
MR 1091271