Previous |  Up |  Next

Article

Keywords:
vector invariant ideal; group algebra; unitary group; orthogonal group
Summary:
Let $F$ be a finite field of characteristic $p$ and $K$ a field which contains a primitive $p$th root of unity and ${\rm char} K\neq p$. Suppose that a classical group $G$ acts on the $F$-vector space $V$. Then it can induce the actions on the vector space $V\oplus V$ and on the group algebra $K[V\oplus V]$, respectively. In this paper we determine the structure of $G$-invariant ideals of the group algebra $K[V\oplus V]$, and establish the relationship between the invariant ideals of $K[V]$ and the vector invariant ideals of $K[V\oplus V]$, if $G$ is a unitary group or orthogonal group. Combining the results obtained by Nan and Zeng (2013), we solve the problem of vector invariant ideals for all classical groups over finite fields.
References:
[1] Brookes, C. J. B., Evans, D. M.: Augmentation modules for affine groups. Math. Proc. Camb. Philos. Soc. 130 (2001), 287-294. DOI 10.1017/S0305004199003734 | MR 1806779 | Zbl 1005.20005
[2] Nan, J., Zeng, L.: Vector invariant ideals of abelian group algebras under the action of the symplectic groups. J. Algebra Appl. 12 (2013), Article ID 1350046, 12 pages. MR 3092523 | Zbl 1282.16030
[3] Osterburg, J. M., Passman, D. S., Zalesskiĭ, A. E.: Invariant ideals of abelian group algebras under the multiplicative action of a field II. Proc. Am. Math. Soc. 130 (2002), 951-957. DOI 10.1090/S0002-9939-01-06338-9 | MR 1873766
[4] Passman, D. S.: Invariant ideals of abelian group algebras under the action of simple linear groups. Resen. Inst. Mat. Estat. Univ. São Paulo 5 (2002), 377-390. MR 2015346 | Zbl 1050.16016
[5] Passman, D. S.: Finitary actions and invariant ideals. Turk. J. Math. 31, Suppl., (2007), 113-130. MR 2369827 | Zbl 1162.16014
[6] Passman, D. S.: Invariant ideals of abelian group algebras under the torus action of a field I. J. Algebra 324 (2010), 3035-3043. DOI 10.1016/j.jalgebra.2010.01.023 | MR 2732986 | Zbl 1217.16020
[7] Passman, D. S.: Invariant ideals of abelian group algebras under the torus action of a field II. J. Algebra 331 (2011), 362-377. DOI 10.1016/j.jalgebra.2011.01.011 | MR 2774663 | Zbl 1235.16022
[8] Passman, D. S., Zalesskiĭ, A. E.: Invariant ideals of abelian group algebras under the multiplicative action of a field I. Proc. Am. Math. Soc. 130 (2002), 939-949. DOI 10.1090/S0002-9939-01-06092-0 | MR 1873765
[9] Richman, D. R.: On vector invariants over finite fields. Adv. Math. 81 (1990), 30-65. DOI 10.1016/0001-8708(90)90003-6 | MR 1051222 | Zbl 0715.13002
[10] Richman, D. R.: Explicit generators of the invariants of finite groups. Adv. Math. 124 (1996), 49-76. DOI 10.1006/aima.1996.0077 | MR 1423198 | Zbl 0879.13003
[11] Richman, D. R.: Invariants of finite groups over fields of characteristic $p$. Adv. Math. 124 (1996), 25-48. DOI 10.1006/aima.1996.0076 | MR 1423197 | Zbl 0879.13004
[12] Wan, Z.: Geometry of classical groups over finite fields and its applications. Discrete Math. 174 (1997), 365-381. DOI 10.1016/S0012-365X(96)00350-0 | MR 1477255 | Zbl 0895.20040
Partner of
EuDML logo