[3] Butkovič, P., Schneider, H., Sergeev, S.:
Recognising weakly stable matrices. SIAM J. Control Optim. 50 (2012), 5, 3029-3051.
DOI 10.1137/110837942 |
MR 3022097
[5] Cechlárová, K.:
Efficient computation of the greatest eigenvector in fuzzy algebra. Tatra Mt. Math. Publ. 12 (1997), 73-79.
MR 1607194 |
Zbl 0963.65041
[8] Nola, A. Di, Gerla, B.:
Algebras of Łukasiewicz's logic and their semiring reducts. In: Idempotent Mathematics and Mathematical Physics (G. L. Litvinov and V. P. Maslov, eds.), 2005, pp. 131-144.
DOI 10.1090/conm/377/06988 |
MR 2149001 |
Zbl 1081.06009
[10] Gavalec, M.: Periodicity in Extremal Algebra. Gaudeamus, Hradec Králové 2004.
[11] Gavalec, M., Plavka, J.: Fast algorithm for extremal biparametric eigenproblem. Acta Electrotechnica et Informatica 7 (2007), 3, 1-5.
[12] Gavalec, M., Zimmermann, K.:
Classification of solutions to systems of two-sided equations with interval coefficients. Int. J. Pure Appl. Math. 45 (2008), 533-542.
MR 2426231 |
Zbl 1154.65036
[14] Gondran, M., Minoux, M.:
Graphs, dioids and semirings: new models and algorithms. Springer, 2008.
MR 2389137 |
Zbl 1201.16038
[15] Heidergott, B., Olsder, G.-J., Woude, J. van der:
Max-plus at Work. Princeton University Press, 2005.
DOI 10.1515/9781400865239
[22] Myšková, H.:
Interval eigenvectors of circulant matrices in fuzzy algebra. Acta Electrotechnica et Informatica 12 (2012), 3, 57-61.
DOI 10.2478/v10198-012-0033-3
[23] Myšková, H.:
Weak stability of interval orbits of circulant matrices in fuzzy algebra. Acta Electrotechnica et Informatica 12 (2012), 3, 51-56.
DOI 10.2478/v10198-012-0032-4
[24] Plavka, J., Szabó, P.: The $O(n^2 )$ algorithm for the eigenproblem of an $\epsilon$-triangular Toeplitz matrices in max-plus algebra. Acta Electrotechnica et Informatica 9 (2009), 4, 50-54.
[26] Plavka, J.:
On the weak robustness of fuzzy matrices. Kybernetika 49 (2013), 1, 128-140.
MR 3097386 |
Zbl 1267.15026
[31] Zimmernann, K.: Extremální algebra (in Czech). Ekon.ústav ČSAV Praha, 1976.