Previous |  Up |  Next

Article

Keywords:
max-min algebra; interval; weakly robust; weakly stable; eigenspace; simple image set
Summary:
A matrix $A$ is said to have \mbox{\boldmath$X$}-simple image eigenspace if any eigenvector $x$ belonging to the interval $\mbox{\boldmath$X$}=\{x\colon \underline x\leq x\leq\overline x\}$ is the unique solution of the system $A\otimes y=x$ in $\mbox{\boldmath$X$}$. The main result of this paper is a combinatorial characterization of such matrices in the linear algebra over max-min (fuzzy) semiring. The characterized property is related to and motivated by the general development of tropical linear algebra and interval analysis, as well as the notions of simple image set and weak robustness (or weak stability) that have been studied in max-min and max-plus algebras.
References:
[1] Butkovič, P.: Simple image set of $(\max,+)$ linear mappings. Discrete Appl. Math. 105 (2000), 73-86. DOI 10.1016/s0166-218x(00)00212-2 | MR 1780462 | Zbl 0976.15013
[2] Butkovič, P.: Max-linear Systems: Theory and Applications. Springer, 2010. DOI 10.1007/978-1-84996-299-5
[3] Butkovič, P., Schneider, H., Sergeev, S.: Recognising weakly stable matrices. SIAM J. Control Optim. 50 (2012), 5, 3029-3051. DOI 10.1137/110837942 | MR 3022097
[4] Cechlárová, K.: Unique solvability of max-min fuzzy equations and strong regularity of matrices over fuzzy algebra. Fuzzy Sets and Systems 75 (1995), 165-177. DOI 10.1016/0165-0114(95)00021-c | MR 1358219 | Zbl 0852.15011
[5] Cechlárová, K.: Efficient computation of the greatest eigenvector in fuzzy algebra. Tatra Mt. Math. Publ. 12 (1997), 73-79. MR 1607194 | Zbl 0963.65041
[6] Cechlárová, K.: On the powers of matrices in bottleneck/fuzzy algebra. Linear Algebra Appl. 246 (1996), 97-112. DOI 10.1016/0024-3795(94)00338-6 | MR 1407661 | Zbl 0866.15009
[7] Cuninghame-Green, R. A.: Minimax algebra and applications. Adv. Imaging Electron Phys. 90 (1995), 1-121. DOI 10.1016/s1076-5670(08)70083-1 | Zbl 0739.90073
[8] Nola, A. Di, Gerla, B.: Algebras of Łukasiewicz's logic and their semiring reducts. In: Idempotent Mathematics and Mathematical Physics (G. L. Litvinov and V. P. Maslov, eds.), 2005, pp. 131-144. DOI 10.1090/conm/377/06988 | MR 2149001 | Zbl 1081.06009
[9] Nola, A. Di, Russo, C.: Łukasiewicz transform and its application to compression and reconstruction of digital images. Inform. Sci. 177 (2007), 1481-1498. DOI 10.1016/j.ins.2006.09.002 | MR 2307173 | Zbl 1114.06009
[10] Gavalec, M.: Periodicity in Extremal Algebra. Gaudeamus, Hradec Králové 2004.
[11] Gavalec, M., Plavka, J.: Fast algorithm for extremal biparametric eigenproblem. Acta Electrotechnica et Informatica 7 (2007), 3, 1-5.
[12] Gavalec, M., Zimmermann, K.: Classification of solutions to systems of two-sided equations with interval coefficients. Int. J. Pure Appl. Math. 45 (2008), 533-542. MR 2426231 | Zbl 1154.65036
[13] Golan, J. S.: Semirings and Their Applications. Springer, 1999. DOI 10.1007/978-94-015-9333-5 | MR 1746739 | Zbl 0947.16034
[14] Gondran, M., Minoux, M.: Graphs, dioids and semirings: new models and algorithms. Springer, 2008. MR 2389137 | Zbl 1201.16038
[15] Heidergott, B., Olsder, G.-J., Woude, J. van der: Max-plus at Work. Princeton University Press, 2005. DOI 10.1515/9781400865239
[16] Kolokoltsov, V. N., Maslov, V. P.: Idempotent Analysis and its Applications. Kluwer, Dordrecht 1997. DOI 10.1007/978-94-015-8901-7 | MR 1447629 | Zbl 0941.93001
[17] Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, R.: Computational Complexity and Feasibility of Data Processing and Interval Computations. Kluwer Academic Publishers, Dordrecht-Boston-London 1998. DOI 10.1007/978-1-4757-2793-7 | MR 1491092 | Zbl 0945.68077
[18] Litvinov, G. L., (eds.), V. P. Maslov: Idempotent Mathematics and Mathematical Physics. AMS, Contemporary Mathematics 377, 2005. DOI 10.1090/conm/377 | MR 2145152 | Zbl 1069.00011
[19] Litvinov, G. L., (eds.), S. N. Sergeev: Tropical and Idempotent Mathematics. AMS, Contemporary Mathematics 495, 2009. DOI 10.1090/conm/495 | MR 2581510 | Zbl 1291.00065
[20] Molnárová, M., Myšková, H., Plavka, J.: The robustness of interval fuzzy matrices. Linear Algebra Appl. 438 (2013), 8, 3350-3364. DOI 10.1016/j.laa.2012.12.020 | MR 3023281
[21] Myšková, H., Plavka, J.: The X-robustness of interval fuzzy matrices. Linear Algebra Appl. 438 (2013), 6, 2757-2769. DOI 10.1016/j.laa.2012.11.026 | MR 3008532
[22] Myšková, H.: Interval eigenvectors of circulant matrices in fuzzy algebra. Acta Electrotechnica et Informatica 12 (2012), 3, 57-61. DOI 10.2478/v10198-012-0033-3
[23] Myšková, H.: Weak stability of interval orbits of circulant matrices in fuzzy algebra. Acta Electrotechnica et Informatica 12 (2012), 3, 51-56. DOI 10.2478/v10198-012-0032-4
[24] Plavka, J., Szabó, P.: The $O(n^2 )$ algorithm for the eigenproblem of an $\epsilon$-triangular Toeplitz matrices in max-plus algebra. Acta Electrotechnica et Informatica 9 (2009), 4, 50-54.
[25] Plavka, J., Szabó, P.: On the $\lambda$-robustness of matrices over fuzzy algebra. Discrete Appl. Math. 159 (2011), 5, 381-388. DOI 10.1016/j.dam.2010.11.020 | MR 2755915 | Zbl 1225.15027
[26] Plavka, J.: On the weak robustness of fuzzy matrices. Kybernetika 49 (2013), 1, 128-140. MR 3097386 | Zbl 1267.15026
[27] Rohn, J.: Systems of linear interval equations. Linear Algebra Appl. 126 (1989), 39-78. DOI 10.1016/0024-3795(89)90004-9 | MR 1040771 | Zbl 1061.15003
[28] Sanchez, E.: Resolution of eigen fuzzy sets equations. Fuzzy Sets and Systems 1 (1978), 69-74. DOI 10.1016/0165-0114(78)90033-7 | MR 0494745 | Zbl 0366.04001
[29] Sergeev, S.: Max-algebraic attraction cones of nonnegative irreducible matrices. Linear Algebra Appl. 435 (2011), 7, 1736-1757. DOI 10.1016/j.laa.2011.02.038 | MR 2810668 | Zbl 1226.15017
[30] Tan, Yi-Jia: Eigenvalues and eigenvectors for matrices over distributive lattices. Linear Algebra Appl. 283 (1998), 257-272. DOI 10.1016/s0024-3795(98)10105-2 | MR 1657171 | Zbl 0932.15005
[31] Zimmernann, K.: Extremální algebra (in Czech). Ekon.ústav ČSAV Praha, 1976.
Partner of
EuDML logo