Previous |  Up |  Next

Article

Keywords:
absolute genus field; relative genus field; fundamental system of units; 2-class group; capitulation; quadratic field; biquadratic field; multiquadratic CM-field
Summary:
We study the capitulation of \mbox {$2$-ideal} classes of an infinite family of imaginary bicyclic biquadratic number fields consisting of fields $\Bbbk =\Bbb Q(\sqrt {2pq}, {\rm i})$, where ${\rm i}=\sqrt {-1}$ and $p\equiv -q\equiv 1 \pmod 4$ are different primes. For each of the three quadratic extensions $\Bbb K/\Bbbk $ inside the absolute genus field $\Bbbk ^{(*)}$ of $\Bbbk $, we determine a fundamental system of units and then compute the capitulation kernel of $\Bbb K/\Bbbk $. The generators of the groups ${\rm Am}_s(\Bbbk /F)$ and ${\rm Am}(\Bbbk /F)$ are also determined from which we deduce that $\Bbbk ^{(*)}$ is smaller than the relative genus field $(\Bbbk /\Bbb Q({\rm i}))^*$. Then we prove that each strongly ambiguous class of $\Bbbk /\Bbb Q({\rm i})$ capitulates already in $\Bbbk ^{(*)}$, which gives an example generalizing a theorem of Furuya (1977).
References:
[1] Azizi, A.: On the capitulation of the 2-class group of $\Bbbk=\Bbb Q(\sqrt2pq, i)$ where $p\equiv-q\equiv1\bmod4$. Acta Arith. 94 French (2000), 383-399. MR 1779950
[2] Azizi, A.: Units of certain imaginary abelian number fields over $\Bbb Q$. Ann. Sci. Math. Qué. 23 French (1999), 15-21. MR 1721726 | Zbl 1041.11072
[3] Azizi, A., Taous, M.: Determination of the fields $\Bbbk=\Bbb Q(\sqrt d,\sqrt{-1})$ given the 2-class groups are of type $(2,4)$ or $(2,2,2)$. Rend. Ist. Mat. Univ. Trieste 40 French (2008), 93-116. MR 2583453
[4] Azizi, A., Zekhnini, A., Taous, M.: On the strongly ambiguous classes of $\Bbbk/\Bbb Q( i)$ where $\Bbbk=\Bbb Q(\sqrt{2p_1p_2}, i)$. Asian-Eur. J. Math. 7 (2014), Article ID 1450021, 26 pages. MR 3189588
[5] Azizi, A., Zekhnini, A., Taous, M.: Structure of $ Gal(\Bbbk_2^{(2)}/\Bbbk)$ for some fields $\Bbbk=\Bbb Q(\sqrt{2p_1p_2}, i)$ with $ Cl_2(\Bbbk)\simeq(2,2,2)$. Abh. Math. Semin. Univ. Hamb. 84 (2014), 203-231. MR 3267742
[6] Azizi, A., Zekhnini, A., Taous, M.: On the generators of the \mbox{$2$-class} group of the field $\Bbbk=\Bbb Q(\sqrt{d}, i)$. Int. J. of Pure and Applied Math. 81 (2012), 773-784. MR 2974674
[7] Azizi, A., Zekhnini, A., Taous, M.: On the unramified quadratic and biquadratic extensions of the field $\Bbb Q(\sqrt d, i)$. Int. J. Algebra 6 (2012), 1169-1173. MR 2974674 | Zbl 1284.11142
[8] Chevalley, C.: Sur la théorie du corps de classes dans les corps finis et les corps locaux. J. Fac. Sci., Univ. Tokyo, Sect. (1) 2 French (1933), 365-476. Zbl 0008.05301
[9] Furuya, H.: Principal ideal theorems in the genus field for absolutely Abelian extensions. J. Number Theory 9 (1977), 4-15. DOI 10.1016/0022-314X(77)90045-2 | MR 0429820 | Zbl 0347.12006
[10] Gras, G.: Class Field Theory: From Theory to Practice. Springer Monographs in Mathematics Springer, Berlin (2003). MR 1941965 | Zbl 1019.11032
[11] Hasse, H.: On the class number of abelian number fields. Mathematische Lehrbücher und Monographien I Akademie, Berlin German (1952). MR 0834791 | Zbl 0046.26003
[12] Heider, F.-P., Schmithals, B.: Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen. J. Reine Angew. Math. 336 German (1982), 1-25. MR 0671319 | Zbl 0505.12016
[13] Hirabayashi, M., Yoshino, K.-I.: Unit indices of imaginary abelian number fields of type $(2,2,2)$. J. Number Theory 34 (1990), 346-361. DOI 10.1016/0022-314X(90)90141-D | MR 1049510 | Zbl 0705.11065
[14] Kubota, T.: Über den bizyklischen biquadratischen Zahlkörper. Nagoya Math. J. 10 German (1956), 65-85. DOI 10.1017/S0027763000000088 | MR 0083009 | Zbl 0074.03001
[15] Lemmermeyer, F.: The ambiguous class number formula revisited. J. Ramanujan Math. Soc. 28 (2013), 415-421. MR 3158989
[16] Louboutin, S.: Hasse unit indices of dihedral octic CM-fields. Math. Nachr. 215 (2000), 107-113. DOI 10.1002/1522-2616(200007)215:1<107::AID-MANA107>3.0.CO;2-A | MR 1768197 | Zbl 0972.11105
[17] McCall, T. M., Parry, C. J., Ranalli, R.: Imaginary bicyclic biquadratic fields with cyclic 2-class group. J. Number Theory 53 (1995), 88-99. DOI 10.1006/jnth.1995.1079 | MR 1344833 | Zbl 0831.11059
[18] Sime, P. J.: On the ideal class group of real biquadratic fields. Trans. Am. Math. Soc. 347 (1995), 4855-4876. DOI 10.1090/S0002-9947-1995-1333398-3 | MR 1333398 | Zbl 0847.11060
[19] Terada, F.: A principal ideal theorem in the genus field. Tohoku Math. J. (2) 23 (1971), 697-718. DOI 10.2748/tmj/1178242555 | MR 0306158 | Zbl 0243.12003
[20] Wada, H.: On the class number and the unit group of certain algebraic number fields. J. Fac. Sci., Univ. Tokyo, Sect. (1) 13 (1966), 201-209. MR 0214565 | Zbl 0158.30103
Partner of
EuDML logo