Previous |  Up |  Next

Article

Title: General proportional mean residual life model (English)
Author: Kayid, Mohamed
Author: Izadkhah, Salman
Author: ALmufarrej, Dalal
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 61
Issue: 5
Year: 2016
Pages: 607-622
Summary lang: English
.
Category: math
.
Summary: By considering a covariate random variable in the ordinary proportional mean residual life (PMRL) model, we introduce and study a general model, taking more situations into account with respect to the ordinary PMRL model. We investigate how stochastic structures of the proposed model are affected by the stochastic properties of the baseline and the mixing variables in the model. Several characterizations and preservation properties of the new model under different stochastic orders and aging classes are provided. In addition, to illustrate different properties of the model, some examples are presented. (English)
Keyword: stochastic order
Keyword: preservation property
Keyword: decreasing failure rate (DFR)
Keyword: increasing mean residual life (IMRL)
MSC: 60E05
MSC: 60E15
MSC: 62N05
idZBL: Zbl 06644014
idMR: MR3547764
DOI: 10.1007/s10492-016-0149-3
.
Date available: 2016-10-01T15:56:49Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145893
.
Reference: [1] Barlow, R. E., Proschan, F.: Statistical Theory of Reliability and Life Testing.International Series in Decision Processes. Holt, Rinehart and Winston, New York (1975). Zbl 0379.62080, MR 0438625
Reference: [2] Behboodian, J.: Covariance inequality and its applications.Int. J. Math. Educ. Sci. Technol. 25 (1994), 643-647. Zbl 0822.60015, MR 1295325, 10.1080/0020739940250503
Reference: [3] Chen, Y. Q., Cheng, S.: Semiparametric regression analysis of mean residual life with censored survival data.Biometrika 92 (2005), 19-29. Zbl 1068.62044, MR 2158607
Reference: [4] Chen, Y. Q., Jewell, N. P., Lei, X., Cheng, S. C.: Semiparametric estimation of proportional mean residual life model in presence of censoring.Biometrics 61 (2005), 170-178. Zbl 1077.62079, MR 2135857, 10.1111/j.0006-341X.2005.030224.x
Reference: [5] Gupta, R. C.: Mean residual life function for additive and multiplicative hazard rate models.Probab. Eng. Inf. Sci. 30 (2016), 281-297. Zbl 1373.62496, MR 3478846, 10.1017/S0269964815000388
Reference: [6] Gupta, R. C., Kirmani, S. N. U. A.: On the proportional mean residual life model and its implications.Statistics 32 (1998), 175-187. Zbl 0916.62064, MR 1708121, 10.1080/02331889808802660
Reference: [7] Karlin, S.: Total Positivity. Vol. I.Stanford University Press, Stanford (1968). MR 0230102
Reference: [8] Kayid, M., Izadkhah, S.: A new extended mixture model of residual lifetime distributions.Oper. Res. Lett. 43 (2015), 183-188. MR 3319482, 10.1016/j.orl.2015.01.011
Reference: [9] Kayid, M., Izadkhah, S., ALmufarrej, D.: Random effect additive mean residual life model.IEEE Trans. Reliab. 65 (2016), 860-866. 10.1109/TR.2015.2491600
Reference: [10] Lai, C.-D., Xie, M.: Stochastic Ageing and Dependence for Reliability.Springer, New York (2006). Zbl 1098.62130, MR 2223811
Reference: [11] Maguluri, G., Zhang, C.-H.: Estimation in the mean residual life regression model.J. R. Stat. Soc., Ser. B 56 (1994), 477-489. Zbl 0803.62083, MR 1278221
Reference: [12] Mansourvar, Z., Martinussen, T., Scheike, T. H.: Semiparametric regression for restricted mean residual life under right censoring.J. Appl. Stat. 42 (2015), 2597-2613. MR 3428833, 10.1080/02664763.2015.1043871
Reference: [13] Nanda, A. K., Bhattacharjee, S., Alam, S. S.: Properties of proportional mean residual life model.Stat. Probab. Lett. 76 (2006), 880-890. Zbl 1089.62120, MR 2268431, 10.1016/j.spl.2005.10.019
Reference: [14] Nanda, A. K., Bhattacharjee, S., Balakrishnan, N.: Mean residual life function, associated orderings and properties.IEEE Trans. Reliab. 59 (2010), 55-65. 10.1109/TR.2009.2035791
Reference: [15] Nanda, A. K., Das, S., Balakrishnan, N.: On dynamic proportional mean residual life model.Probab. Eng. Inf. Sci. 27 (2013), 553-588. Zbl 1282.90058, MR 3150113, 10.1017/S0269964813000259
Reference: [16] Nelsen, R. B.: An Introduction to Copulas.Springer Series in Statistics Springer, New York (2006). Zbl 1152.62030, MR 2197664
Reference: [17] Oakes, D., Dasu, T.: Inference for the proportional mean residual life model.Crossing Boundaries: Statistical Essays in Honor of J. Hall IMS Lecture Notes Monogr. Ser. 43 Inst. Math. Statist., Beachwood (2003), 105-116. Zbl 1255.62314, MR 2125050, 10.1214/lnms/1215092393
Reference: [18] Shaked, M., Shanthikumar, J. G.: Stochastic Orders.Springer Series in Statistics Springer, New York (2007). MR 2265633
Reference: [19] Zahedi, H.: Proportional mean remaining life model.J. Stat. Plann. Inference 29 (1991), 221-228. MR 1133703, 10.1016/0378-3758(92)90135-F
Reference: [20] Zhao, W., Elsayed, E. A.: Modelling accelerated life testing based on mean residual life.Int. J. Syst. Sci. 36 (2005), 689-696. Zbl 1087.90020, MR 2171201, 10.1080/00207720500160084
.

Files

Files Size Format View
AplMat_61-2016-5_5.pdf 286.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo