[4] Du, Z.:
The real symmetric matrices with a P-set of maximum size and their associated graphs. J. South China Norm. Univ., Nat. Sci. Ed. 48 (2016), 119-122.
MR 3469083 |
Zbl 1363.05159
[5] Du, Z., Fonseca, C. M. da: The singular acyclic matrices of even order with a P-set of maximum size. (to appear) in Filomat.
[6] Du, Z., Fonseca, C. M. da:
The acyclic matrices with a P-set of maximum size. Linear Algebra Appl. 468 (2015), 27-37.
MR 3293238 |
Zbl 1307.15012
[8] Du, Z., Fonseca, C. M. da:
Nonsingular acyclic matrices with an extremal number of P-vertices. Linear Algebra Appl. 442 (2014), 2-19.
MR 3134347 |
Zbl 1282.15028
[9] Du, Z., Fonseca, C. M. da:
The singular acyclic matrices with maximal number of P-vertices. Linear Algebra Appl. 438 (2013), 2274-2279.
MR 3005289 |
Zbl 1258.05024
[11] Fernandes, R., Cruz, H. F. da:
Sets of Parter vertices which are Parter sets. Linear Algebra Appl. 448 (2014), 37-54.
MR 3182972 |
Zbl 1286.15008
[12] Horn, R. A., Johnson, C. R.:
Matrix Analysis. Cambridge University Press, Cambridge (2013).
MR 2978290 |
Zbl 1267.15001
[13] Johnson, C. R., Duarte, A. Leal, Saiago, C. M.:
The Parter-Wiener theorem: Refinement and generalization. SIAM J. Matrix Anal. Appl. 25 (2003), 352-361.
DOI 10.1137/S0895479801393320 |
MR 2047422
[17] Nelson, C., Shader, B.:
All pairs suffice for a P-set. Linear Algebra Appl. 475 (2015), 114-118.
MR 3325221 |
Zbl 1312.15012
[18] Nelson, C., Shader, B.:
Maximal P-sets of matrices whose graph is a tree. Linear Algebra Appl. 485 (2015), 485-502.
MR 3394160 |
Zbl 1322.05092
[19] Sciriha, I.:
A characterization of singular graphs. Electron. J. Linear Algebra (electronic only) 16 (2007), 451-462.
MR 2365899 |
Zbl 1142.05344