[3] Alon, N., Coja-Oghlan, A., Hàn, H., Kang, M., Rödl, V., Schacht, M.:
Quasi-randomness and algorithmic regularity for graphs with general degree distributions. SIAM J. Comput. 39 (2010), 2336-2362.
DOI 10.1137/070709529 |
MR 2644348 |
Zbl 1227.05225
[5] Alon, N., Spencer, J. H.:
The Probabilistic Method. Wiley-Interscience Series in Discrete Mathematics and Optimization John Wiley & Sons, Hoboken (2008).
MR 2437651 |
Zbl 1148.05001
[11] Conlon, D., Zhao, Y.: Quasirandom Cayley graphs. Available at ArXiv: 1603.03025 [math.CO].
[13] Donath, W. E., Hoffman, A. J.: Algorithms for partitioning of graphs and computer logic based on eigenvectors of connection matrices. (1972), IBM Techn. Disclosure Bull. 15 938-944.
[17] Gowers, W. T.: Personal communication.
[18] Hall, K. M.:
R-dimensional quadratic placement algorithm. (1970), Management Science Series A (Theory) 17 219-229.
Zbl 0203.52503
[19] Kohayakawa, Y., Rödl, V.:
Regular pairs in sparse random graphs I. Random Struct. Algorithms 22 (2003), 359-434.
MR 1980964 |
Zbl 1022.05076
[22] Lovász, L.:
Combinatorial Problems and Exercises. AMS Chelsea Publishing, Providence (2007).
MR 2321240 |
Zbl 1120.05001
[27] Spielman, D.:
Spectral graph theory. Combinatorial Scientific Computing Chapman & Hall/CRC Comput. Sci. Ser. CRC Press, Boca Raton, FL (2012), 495-524.
DOI 10.1201/b11644-19 |
MR 2952760
[28] Spielman, D. A., Teng, S.-H:
Spectral partitioning works: planar graphs and finite element meshes. Linear Algebra Appl. 421 (2007), 284-305.
MR 2294342 |
Zbl 1122.05062
[30] Thomason, A.:
Pseudo-random graphs. Random graphs '85 Ann. Discrete Math. 33 North-Holland, Amsterdam (1987), 307-331.
MR 0930498 |
Zbl 0672.05068
[31] Thomason, A.:
Random graphs, strongly regular graphs and pseudo-random graphs. Surveys in Combinatorics 1987 London Math. Soc. Lecture Note Ser. 123 Cambridge Univ. Press, Cambridge (1987), 173-195.
MR 0905280 |
Zbl 0672.05068