Previous |  Up |  Next

Article

Keywords:
row-dense matrix; linear preserver; strong linear preserver
Summary:
Let $\mathbf {M}_{m,n}$ be the set of all $m\times n$ real matrices. A matrix $A\in \mathbf {M}_{m,n}$ is said to be row-dense if there are no zeros between two nonzero entries for every row of this matrix. We find the structure of linear functions $T\colon \mathbf {M}_{m,n} \rightarrow \mathbf {M}_{m,n}$ that preserve or strongly preserve row-dense matrices, i.e., $T(A)$ is row-dense whenever $A$ is row-dense or $T(A)$ is row-dense if and only if $A$ is row-dense, respectively. Similarly, a matrix $A\in \mathbf {M}_{n,m}$ is called a column-dense matrix if every column of $A$ is a column-dense vector. At the end, the structure of linear preservers (strong linear preservers) of column-dense matrices is found.
References:
[1] Fiedler, M., Hall, F. J., Stroev, M.: Dense alternating sign matrices and extensions. Linear Algebra Appl. 444 (2014), 219-226. MR 3145840 | Zbl 1286.15041
[2] Frobenius, G.: Über die Darstellung der endlichen Gruppen durch Linear Substitutionen. Berl. Ber. 1897 (1897), German 994-1015.
[3] Nadoshan, M. A. Hadian, Armandnejad, A.: $B$-majorization and its linear preservers. Linear Algebra Appl. 478 (2015), 218-227. MR 3342422
[4] Hogben, L.: Handbook of Linear Algebra. Discrete Mathematics and Its Applications Chapman & Hall/CRC Press, Boca Raton (2014). MR 3013937 | Zbl 1284.15001
[5] Li, C.-K., Pierce, S.: Linear preserver problems. Am. Math. Mon. 108 (2001), 591-605. DOI 10.2307/2695268 | MR 1862098 | Zbl 0991.15001
[6] Pierce, S., Lim, M. H., Lowey, R., Li, Ch.-K., Tsing, N.-K., McDonald, B. R., Basley, L.: A survey of linear preserver problems. Linear Multilinear Algebra 33 (1992), 1-129. DOI 10.1080/03081089208818176
[7] Soleymani, M., Armandnejad, A.: Linear preservers of even majorization on $M_{n,m}$. Linear Multilinear Algebra 62 (2014), 1437-1449. DOI 10.1080/03081087.2013.832487 | MR 3261749 | Zbl 1309.15045
Partner of
EuDML logo