[1] B. Aupetit, E. Makai, Jr., M. Mbekhta, J. Zemánek:
The connected components of the idempotents in the Calkin algebra, and their liftings. Operator Theory and Banach Algebras, Proc. Int. Conf. in Analysis, Rabat, 1999 M. Chidami et al. Theta, Bucharest (2003), 23-30.
MR 2006311 |
Zbl 1084.46519
[2] Boulmaarouf, Z., Miranda, M. Fernandez, Labrousse, J.-Ph.:
An algorithmic approach to orthogonal projections and Moore-Penrose inverses. Numer. Funct. Anal. Optimization 18 (1997), 55-63.
DOI 10.1080/01630569708816746 |
MR 1442018
[4] Kovarik, Z. V.:
Similarity and interpolation between projectors. Acta Sci. Math. 39 (1977), 341-351.
MR 0482324 |
Zbl 0392.47008
[5] Maeda, S.:
On arcs in the space of projections of a $C^*$-algebra. Math. Jap. 21 (1976), 371-374.
MR 0454651 |
Zbl 0353.46051
[6] E. Makai, Jr.: Algebraic elements in Banach algebras (joint work with J. Zemánek). 6th Linear Algebra Workshop, Book of Abstracts Kranjska Gora (2011), p. 26.
[7] E. Makai, Jr., J. Zemánek: On the structure of the set of elements in a Banach algebra which satisfy a given polynomial equation, and their liftings. Available at www.renyi.mta.hu/ {makai}.
[8] E. Makai, Jr., J. Zemánek:
On polynomial connections between projections. Linear Algebra Appl. 126 (1989), 91-94.
MR 1040774 |
Zbl 0714.47011
[9] Trémon, M.:
On the degree of polynomials connecting two idempotents of a Banach algebra. Proc. R. Ir. Acad. Sect. A 95 (1995), 233-235.
MR 1660382 |
Zbl 0853.46044
[10] Tremon, M.:
Polynômes de degré minimum connectant deux projections dans une algèbre de Banach. Linear Algebra Appl. French 64 (1985), 115-132.
MR 0776520 |
Zbl 0617.46054