[2] Ando, T., Hiai, F.:
Log majorization and complementary Golden-Thompson type inequalities. Linear Algebra Appl. 197/198 (1994), 113-131.
MR 1275611 |
Zbl 0793.15011
[4] Audenaert, K. M. R.:
A norm inequality for pairs of commuting positive semidefinite matrices. Electron. J. Linear Algebra (electronic only) 30 (2015), 80-84.
MR 3318430 |
Zbl 1326.15030
[6] Bhatia, R.:
Postitive Definite Matrices. Princeton Series in Applied Mathematics Princeton University Press, Princeton (2007).
MR 3443454
[7] Bhatia, R.:
Matrix Analysis. Graduate Texts in Mathematics 169 Springer, New York (1997).
MR 1477662
[8] Bhatia, R., Grover, P.:
Norm inequalities related to the matrix geometric mean. Linear Algebra Appl. 437 (2012), 726-733.
MR 2921731 |
Zbl 1252.15023
[10] Bourin, J.-C., Uchiyama, M.:
A matrix subadditivity inequality for {$f(A+B)$} and {$f(A)+f(B)$}. Linear Algebra Appl. 423 (2007), 512-518.
MR 2312422 |
Zbl 1123.15013
[11] Fiedler, M., Pták, V.:
A new positive definite geometric mean of two positive definite matrices. Linear Algebra Appl. 251 (1997), 1-20.
MR 1421263 |
Zbl 0872.15014
[13] Lin, M.:
Remarks on two recent results of Audenaert. Linear Algebra Appl. 489 (2016), 24-29.
MR 3421835 |
Zbl 1326.15033
[15] Marshall, A. W., Olkin, I., Arnold, B. C.:
Inequalities: Theory of Majorization and Its Applications. Springer Series in Statistics Springer, New York (2011).
MR 2759813 |
Zbl 1219.26003
[16] Papadopoulos, A.:
Metric Spaces, Convexity and Nonpositive Curvature. IRMA Lectures in Mathematics and Theoretical Physics 6 European Mathematical Society, Zürich (2005).
MR 2132506 |
Zbl 1115.53002