[1] Aouchiche, M., Hansen, P.:
Two Laplacians for the distance matrix of a graph. Linear Algebra Appl. 439 (2013), 21-33.
MR 3045220 |
Zbl 1282.05086
[2] Berman, A., Plemmons, R. J.:
Nonnegative Matrices in the Mathematical Sciences. Computer Science and Applied Mathematics New York, Academic Press (1979).
MR 0544666 |
Zbl 0484.15016
[3] Bozkurt, S. B., Bozkurt, D.:
On the signless Laplacian spectral radius of digraphs. Ars Comb. 108 (2013), 193-200.
MR 3060265 |
Zbl 1289.05270
[4] Cao, D.:
Bounds on eigenvalues and chromatic numbers. Linear Algebra Appl. 270 (1998), 1-13.
MR 1484072 |
Zbl 0894.05041
[6] Cui, S.-Y., Tian, G.-X., Guo, J.-J.:
A sharp upper bound on the signless Laplacian spectral radius of graphs. Linear Algebra Appl. 439 (2013), 2442-2447.
MR 3091317 |
Zbl 1282.05072
[7] Das, K. Ch.:
A characterization on graphs which achieve the upper bound for the largest Laplacian eigenvalue of graphs. Linear Algebra Appl. 376 (2004), 173-186.
MR 2015532 |
Zbl 1042.05059
[9] Fiedler, M.:
A geometric approach to the Laplacian matrix of a graph. Combinatorial and Graph-Theoretical Problems in Linear Algebra R. A. Brualdi 73-98 Proc. Conf. Minnesota 1991. IMA Vol. Math. Appl. 50 Springer, New York (1993).
MR 1240957 |
Zbl 0791.05073
[12] Guo, J.-M., Li, J., Shiu, W. C.:
A note on the upper bounds for the Laplacian spectral radius of graphs. Linear Algebra Appl. 439 (2013), 1657-1661.
MR 3073893 |
Zbl 1282.05117
[13] Horn, R. A., Johnson, C. R.:
Matrix Analysis. Cambridge University Press, Cambridge (2013).
MR 2978290 |
Zbl 1267.15001
[15] Li, J.-S., Pan, Y.-L.:
de Caen's inequality and bounds on the largest Laplacian eigenvalue of a graph. Linear Algebra Appl. 328 (2001), 153-160.
MR 1823515 |
Zbl 0988.05062
[16] Li, J.-S., Zhang, X.-D.:
On the Laplacian eigenvalues of a graph. Linear Algebra Appl. 285 (1998), 305-307.
MR 1653547 |
Zbl 0931.05052
[19] Zhang, X.-D.:
Two sharp upper bounds for the Laplacian eigenvalues. Linear Algebra Appl. 376 (2004), 207-213.
MR 2015534 |
Zbl 1037.05032