Previous |  Up |  Next

Article

Keywords:
Hardy operators involving suprema; weighted inequalities
Summary:
Let $u$ be a weight on $(0, \infty)$. Assume that $u$ is continuous on $(0, \infty)$. Let the operator $S_{u}$ be given at measurable non-negative function $\varphi$ on $(0, \infty)$ by $$ S_{u}\varphi (t)= \sup_{0< \tau\leq t}u(\tau)\varphi (\tau). $$ We characterize weights $v,w$ on $(0, \infty)$ for which there exists a positive constant $C$ such that the inequality $$ \left( \int_{0}^{\infty}[S_{u}\varphi (t)]^{q}w(t)\,dt\right)^{\frac 1q} \lesssim \left( \int_{0}^{\infty}[\varphi (t)]^{p}v(t)\,dt\right)^{\frac 1p} $$ holds for every $0<p, q<\infty$. Such inequalities have been used in the study of optimal Sobolev embeddings and boundedness of certain operators on classical Lorenz spaces.
References:
[1] Ariño M., Muckenhoupt B.: Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions. Trans. Amer. Math. Soc. 320 (1990), 727–735. MR 0989570 | Zbl 0716.42016
[2] Bennett C., Sharpley R.: Interpolation of Operators. Pure and Applied Mathematics, 129, Academic Press, Boston, 1988. MR 0928802 | Zbl 0647.46057
[3] Carro M., Gogatishvili A., Martín J., Pick L.: Weighted inequalities involving two Hardy operators with applications to embeddings of function spaces. J. Operator Theory 59 (2008), no. 2, 101–124. MR 2411048 | Zbl 1150.26001
[4] Cianchi A., Kerman R., Opic B., Pick L.: A sharp rearrangement inequality for fractional maximal operator. Studia Math. 138 (2000), 277-284. MR 1758860
[5] Cianchi A., Pick L.: Optimal Gaussian Sobolev embeddings. J. Funct. Anal. 256 (2009), no. 11, 3588–3642. DOI 10.1016/j.jfa.2009.03.001 | MR 2514054 | Zbl 1203.46019
[6] Cianchi A., Pick L., Slavíková L.: Higher-order Sobolev embeddings and isoperimetric inequalities. preprint, 2012. Zbl 1334.46027
[7] Cwikel M., Pustylnik E.: Weak type interpolation near “endpoint” spaces. J. Funct. Anal. 171 (1999), 235–277. DOI 10.1006/jfan.1999.3502 | MR 1745635 | Zbl 0978.46008
[8] Doktorskii R.Ya.: Reiteration relations of the real interpolation method. Soviet Math. Dokl. 44 (1992), 665–669. MR 1153547
[9] Evans W.D., Opic B.: Real interpolation with logarithmic functors and reiteration. Canad. J. Math. 52 (2000), 920–960. DOI 10.4153/CJM-2000-039-2 | MR 1782334 | Zbl 0981.46058
[10] Gogatishvili A., Opic B., Pick L.: Weighted inequalities for Hardy-type operators involving suprema. Collect. Math. 57 (2006), no. 3, 227–255. MR 2264321 | Zbl 1116.47041
[11] Kerman R., Pick L.: Optimal Sobolev imbeddings. Forum Math. 18 (2006), no. 4, 535–570. DOI 10.1515/FORUM.2006.028 | MR 2254384 | Zbl 1120.46018
[12] Kerman R., Pick L.: Optimal Sobolev imbedding spaces. Studia Math. 192 (2009), no. 3, 195–217. DOI 10.4064/sm192-3-1 | MR 2504838 | Zbl 1180.46026
[13] Pick L.: Supremum operators and optimal Sobolev inequalities. Function Spaces, Differential Operators and Nonlinear Analysis, Vol. 4, Proceedings of the Spring School held in Syöte, June 1999, V. Mustonen and J. Rákosník (Eds.), Mathematical Institute of the Academy of Sciences of the Czech Republic, Praha, 2000, pp. 207–219. MR 1755311 | Zbl 0971.26010
[14] Pustylnik E.: Optimal interpolation in spaces of Lorentz-Zygmund type. J. Anal. Math. 79 (1999), 113–157. DOI 10.1007/BF02788238 | MR 1749309 | Zbl 1015.46011
Partner of
EuDML logo