Previous |  Up |  Next

Article

Keywords:
graded polynomial identities
Summary:
Let $G$ be a finite abelian group with identity element $1_G$ and $L=\bigoplus _{g\in G}L^g$ be an infinite dimensional $G$-homogeneous vector space over a field of characteristic $0$. Let $E=E(L)$ be the Grassmann algebra generated by $L$. It follows that $E$ is a $G$-graded algebra. Let $|G|$ be odd, then we prove that in order to describe any ideal of $G$-graded identities of $E$ it is sufficient to deal with $G^{\prime }$-grading, where $|G^{\prime }| \le |G|$, $\dim _FL^{1_{G^{\prime }}}=\infty $ and $\dim _FL^{g^{\prime }}<\infty $ if $g^{\prime }\ne 1_{G^{\prime }}$. In the same spirit of the case $|G|$ odd, if $|G|$ is even it is sufficient to study only those $G$-gradings such that $\dim _FL^g=\infty $, where $o(g)=2$, and all the other components are finite dimensional. We also compute graded cocharacters and codimensions of $E$ in the case $\dim L^{1_G}=\infty $ and $\dim L^g<\infty $ if $g\ne 1_G$.
References:
[1] Anisimov, N.: $\mathbb{Z}_p$-codimension of $\mathbb{Z}_p$-identities of Grassmann algebra. Comm. Algebra 29 (9) (2001), 4211–4230. DOI 10.1081/AGB-100105997 | MR 1857276
[2] Centrone, L.: $\mathbb{Z}_2$-graded identities of the Grassmann algebra in positive characteristic. Linear Algebra Appl. 435 (12) (2011), 3297–3313. DOI 10.1016/j.laa.2011.06.008 | MR 2831611
[3] da Silva, V.R.T.: $\mathbb{Z}_2$-codimensions of the Grassmann algebra. Comm. Algebra 37 (9) (2009), 3342–3359. DOI 10.1080/00927870802502829 | MR 2554206
[4] Di Vincenzo, O.M.: A note on the identities of the Grassmann algebras. Boll. Un. Mat. Ital. A (7) 5 (3) (1991), 307–315. MR 1138544 | Zbl 0758.16008
[5] Di Vincenzo, O.M.: Cocharacters of $G$-graded algebras. Comm. Algebra 24 (10) (1996), 3293–3310. DOI 10.1080/00927879608825751 | MR 1402563 | Zbl 0880.16013
[6] Di Vincenzo, O.M., da Silva, V.R.T.: On $Z_2$-graded polynomial identities of the Grassmann algebra. Linear Algebra Appl. 431 (2009), 56–72. MR 2522556
[7] Di Vincenzo, O.M., Drensky, V., Nardozza, V.: Subvarieties of the varieties of superalgebras generated by $M_{1,1}(E)$ or $M_2(K)$. Comm. Algebra 31 (1) (2003), 437–461. DOI 10.1081/AGB-120016768 | MR 1969232
[8] Drensky, V., Formanek, E.: Polynomial identity rings. Birkhauser Verlag, Basel – Boston – Berlin, 2000. MR 2064082
[9] Giambruno, A., Mischenko, S., Zaicev, M.V.: Polynomial identities on superalgebras and almost polynomial growth identities of Grassmann algebra. Comm. Algebra 29 (9) (2001), 3787–3800. DOI 10.1081/AGB-100105975 | MR 1857014
[10] Kemer, A.R.: Varieties and $\mathbb{Z}_2$-graded algebras. Izv. Akad. Nauk SSSR, Ser. Mat. 48 (1984), 1042–1059, (Russian) Translation: Math. USSR, Izv. 25 (1985), 359–374. MR 0764308
[11] Kemer, A.R.: Ideals of identities of associative algebras. Transl. Math. Monogr., vol. 87, Amer. Math. Soc., Providence, RI, 1991. MR 1108620 | Zbl 0732.16001
[12] Krakovski, D., Regev, A.: The polynomial identities of the Grassmann algebra. Trans. Amer. Math. Soc. 181 (1973), 429–438. MR 0325658
[13] Latyshev, V.N.: On the choice of basis in a $T$-ideal. Sibirs. Mat. Z. 4 (5) (1963), 1122–1126. MR 0156874
[14] Olsson, J.B., Regev, A.: Colength sequence of some $T$-ideals. J. Algebra 38 (1976), 100–111. DOI 10.1016/0021-8693(76)90247-7 | MR 0409547 | Zbl 0323.16002
[15] Sagan, B.E.: The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions. Graduate Texts in Mathematics, vol. 203, Springer Verlag, 2000. MR 1824028
Partner of
EuDML logo