[2] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry I, II. Wiley-Intersc. Publ., New York, Chichester, Brisbane, Toronto, Singapore, 1991.
[4] Kowalski, O., Opozda, B., Vlášek, Z.:
A Classification of Locally Homogeneous Affine Connections with Skew-Symmetric Ricci Tensor on 2-Dimensional Manifolds. Monatsh. Math. 130 (2000), 109–125.
DOI 10.1007/s006050070041 |
MR 1767180 |
Zbl 0993.53008
[5] Kowalski, O., Opozda, B., Vlášek, Z.:
A classification of locally homogeneous connections on 2-dimensional manifolds vis group-theoretical approach. CEJM 2, 1 (2004), 87–102.
MR 2041671
[6] Mikeš, J., Stepanova, E., Vanžurová, A.:
Differential Geometry of Special Mappings. Palacký University, Olomouc, 2015.
MR 3442960 |
Zbl 1337.53001
[7] Mikeš, J., Vanžurová, A., Hinterleitner, I.:
Geodesic Mappings and Some Generalizations. Palacký University, Olomouc, 2009.
MR 2682926 |
Zbl 1222.53002
[8] Olver, P. J.:
Equivalence, Invariants and Symmetry. Cambridge Univ. Press, Cambridge, 1995.
MR 1337276 |
Zbl 0837.58001
[11] Vanžurová, A., Žáčková, P.: Metrization of linear connections. Aplimat, J. of Applied Math. (Bratislava) 2, 1 (2009), 151–163.
[12] Vanžurová, A., Žáčková, P.:
Metrizability of connections on two-manifolds. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 48 (2009), 157–170.
MR 2641956 |
Zbl 1195.53023
[13] Vanžurová, A.:
On metrizability of locally homogeneous affine connections on 2-dimensional manifolds. Arch. Math. (Brno) 49 (2013), 199–209.
MR 3159333
[14] Vanžurová, A.:
On metrizability of a class of 2-manifolds with linear connection. Miskolc Math. Notes 14, 3 (2013), 311–317.
MR 3144100 |
Zbl 1299.53034