Previous |  Up |  Next

Article

Keywords:
space-time point process; shot-noise Cox process; minimum contrast estimation; projection process; increasing domain asymptotics
Summary:
We consider a flexible class of space-time point process models---inhomogeneous shot-noise Cox point processes. They are suitable for modelling clustering phenomena, e.g. in epidemiology, seismology, etc. The particular structure of the model enables the use of projections to the spatial and temporal domain. They are used to formulate a step-wise estimation method to estimate different parts of the model separately. In the first step, the Poisson likelihood approach is used to estimate the inhomogeneity parameters. In the second and third steps, the minimum contrast estimation based on $K$-functions of the projected processes is used to estimate the interaction parameters. We study the asymptotic properties of the resulting estimators and formulate a set of conditions sufficient for establishing consistency and asymptotic normality of the estimators under the increasing domain asymptotics.
References:
[1] Baddeley, A. J., Møller, J., Waagepetersen, R.: Non- and semi-parametric estimation of interaction in inhomogeneous point patterns. Stat. Neerl. 54 (2000), 329-350. DOI 10.1111/1467-9574.00144 | MR 1804002 | Zbl 1018.62027
[2] Daley, D. J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Vol. II: General Theory and Structure. Probability and Its Applications Springer, New York (2008). MR 2371524 | Zbl 1159.60003
[3] Diggle, P. J.: Spatio-temporal point processes: methods and applications. B. Finkenstädt, et al. Statistical Methods for Spatio-temporal Systems Selected Invited Papers Based on the Presentations at the 6th Séminaire Européen de Statistique SemStat Held as a Summer School of the European Mathematical Society, Bernried, 2004, Chapman and Hall/CRC, Boca Raton, 2007 Monographs on Statistics and Applied Probability {\it 107} (2007), 1-45. MR 2307967 | Zbl 1121.62080
[4] Doukhan, P.: Mixing: Properties and Examples. Lecture Notes in Statistics 85 Springer, New York (1994). DOI 10.1007/978-1-4612-2642-0_3 | MR 1312160 | Zbl 0801.60027
[5] Dvořák, J., Prokešová, M.: Parameter estimation for inhomogeneous space-time shot-noise Cox point processes. (to appear) in Scand. J. Stat. MR 3199056
[6] Gabriel, E.: Estimating second-order characteristics of inhomogeneous spatio-temporal point processes. Methodol. Comput. Appl. Probab. 16 (2014), 411-431. DOI 10.1007/s11009-013-9358-3 | MR 3199055 | Zbl 1308.60061
[7] Gabriel, E., Diggle, P. J.: Second-order analysis of inhomogeneous spatio-temporal point process data. Stat. Neerl. 63 (2009), 43-51. DOI 10.1111/j.1467-9574.2008.00407.x | MR 2656916
[8] Guyon, X.: Random Fields on a Network. Modeling, Statistics, and Applications. Probability and Its Applications Springer, New York (1995). MR 1344683 | Zbl 0839.60003
[9] Hager, W. W.: Minimizing a quadratic over a sphere. SIAM J. Optim. 12 (2001), 188-208. DOI 10.1137/S1052623499356071 | MR 1870591 | Zbl 1058.90045
[10] Hellmund, G., Prokešová, M., Jensen, E. B. V.: Lévy-based Cox point processes. Adv. Appl. Probab. 40 (2008), 603-629. DOI 10.1017/S0001867800002718 | MR 2454025 | Zbl 1149.60031
[11] Kar{á}csony, Z.: A central limit theorem for mixing random fields. Miskolc Math. Notes 7 (2006), 147-160. DOI 10.18514/MMN.2006.151 | MR 2310274 | Zbl 1120.41301
[12] Motzkin, Th.: From among {$n$} conjugate algebraic integers, {$n-1$} can be approximately given. Bull. Am. Math. Soc. 53 (1947), 156-162. DOI 10.1090/S0002-9904-1947-08772-3 | MR 0019653 | Zbl 0032.24702
[13] Møller, J.: Shot noise Cox processes. Adv. Appl. Probab. 35 (2003), 614-640. DOI 10.1017/S0001867800012465 | MR 1990607 | Zbl 1045.60007
[14] Møller, J., Ghorbani, M.: Aspects of second-order analysis of structured inhomogeneous spatio-temporal point processes. Stat. Neerl. 66 (2012), 472-491. DOI 10.1111/j.1467-9574.2012.00526.x | MR 2983306
[15] Møller, J., Waagepetersen, R. P.: Statistical Inference and Simulation for Spatial Point Processes. Monographs on Statistics and Applied Probability 100 Chapman & Hall/CRC, Boca Raton (2004). MR 2004226 | Zbl 1044.62101
[16] Prokešová, M., Dvořák, J.: Statistics for inhomogeneous space-time shot-noise Cox processes. Methodol. Comput. Appl. Probab. 16 (2014), 433-449. DOI 10.1007/s11009-013-9324-0 | MR 3199056 | Zbl 1305.62338
[17] Prokešová, M., Dvořák, J., Jensen, E. B. V.: Two-step estimation procedures for inhomogeneous shot-noise Cox processes. (to appear) in Ann. Inst. Stat. Math.
[18] Ripley, B. D.: Statistical Inference for Spatial Processes. Cambridge University Press, Cambridge (1988). MR 0971986 | Zbl 0705.62090
[19] Stoyan, D., Kendall, W. S., Mecke, J.: Stochastic Geometry and Its Applications. Wiley Series in Probability and Mathematical Statistics John Wiley & Sons, Chichester (1995). MR 0895588 | Zbl 0838.60002
[20] Vaart, A. W. van der: Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 3 Cambridge University Press, Cambridge (1998). MR 1652247
[21] Waagepetersen, R., Guan, Y.: Two-step estimation for inhomogeneous spatial point processes. J. R. Stat. Soc., Ser. B, Stat. Methodol. 71 (2009), 685-702. DOI 10.1111/j.1467-9868.2008.00702.x | MR 2749914 | Zbl 1250.62047
Partner of
EuDML logo