Previous |  Up |  Next

Article

Keywords:
fuzzy random variable; quadratic form; linearly negative quadrant dependence; law of large numbers; almost surely convergence
Summary:
Some maximal inequalities for quadratic forms of independent and linearly negative quadrant dependent fuzzy random variables are established. Strong convergence of such quadratic forms are proved based on the martingale theory. A weak law of large numbers for linearly negative quadrant dependent fuzzy random variables is stated and proved.
References:
[1] Ahmadzade, H., Amini, M., Taheri, S. M., Bozorgnia, A.: Some limit theorems for independent fuzzy random variables. Thaiwan J. Math. 12 (2014), 537-548. MR 3291684 | Zbl 1328.60081
[2] Ahmadzade, H., Amini, M., Taheri, S. M., Bozorgnia, A.: Some moment inequalities for fuzzy martingales and their applications. J. Uncertainty Anal. Appl. 2 (2014), 1-14. DOI 10.1186/2195-5468-2-7
[3] Aumann, R. J.: Integrals of set-valued functions. J. Math. Anal. Appl. 12 (1965), 1-12. DOI 10.1016/0022-247x(65)90049-1 | MR 0185073 | Zbl 0163.06301
[4] Cuzich, J., Gine, E., Zinn, J.: Laws of large numbers for quadratic forms, maxima of products and truncated sums of i.i.d. random variables. Ann. Probab. 23 (1995), 292-333. DOI 10.1214/aop/1176988388 | MR 1330772
[5] Eghbal, N., Amini, M., Bozorgnia, A.: Some maximal inequalities for quadratic forms of negative superadditive dependence random variables. Stat. Probab. Lett. 80 (2010), 587-591. DOI 10.1016/j.spl.2009.12.014 | MR 2595134 | Zbl 1187.60020
[6] Eghbal, N., Amini, M., Bozorgnia, A.: On the Kolmogorov inequalities for quadratic forms of dependent uniformly bounded random variables. Stat. Probab. Lett. 81 (2011), 1112-1120. DOI 10.1016/j.spl.2011.03.005 | MR 2803752 | Zbl 1228.60039
[7] Fei, W.: Regularity and stopping theorem for fuzzy martingales with continuous parameters. Inform. Sci. 169 (2005), 175-87. DOI 10.1016/j.ins.2004.02.011 | MR 2114098 | Zbl 1092.60019
[8] Fei, W., Wu, R., Shao, S.: Doobs stopping theorem for fuzzy (super, sub) martingales with discrete time. Fuzzy Set. Syst. 135 (2003), 377-390. DOI 10.1016/s0165-0114(02)00213-0 | MR 1979606 | Zbl 1020.60035
[9] Feng, Y.: Convergence theorems for fuzzy random variables and fuzzy martingales. Fuzzy Set. Syst. 103 (1999), 435-441. DOI 10.1016/s0165-0114(97)00180-2 | MR 1669281 | Zbl 0939.60027
[10] Feng, Y.: An approach to generalize laws of large numbers for fuzzy random variables. Fuzzy Set. Syst. 128 (2002), 237-245. DOI 10.1016/s0165-0114(01)00142-7 | MR 1908429 | Zbl 1009.60020
[11] Feng, Y., Hu, L., Shu, H.: The variance and covariance of fuzzy random variables and their applications. Fuzzy Set. Syst. 120 (2001), 487-497. MR 1829266 | Zbl 0984.60029
[12] Fu, Y., Wu, Q.: Almost sure central limit theoremfor LNQD sequences. J. Guilin University of Technology 30 (2010), 4, 637-639. DOI 10.1016/j.ins.2008.01.005
[13] Fu, K., Zhang, L.-X.: Strong limit theorems for random sets and fuzzy random sets with slowly varying weights. Inform. Sci. 178 (2008), 2648-2660. DOI 10.1016/j.ins.2008.01.005 | MR 2414803 | Zbl 1176.60020
[14] Gadidov, A.: Strong law of large numbers for multilinear forms. Ann. Probab. 26 (1998), 902-923. DOI 10.1214/aop/1022855655 | MR 1626539 | Zbl 0937.60016
[15] Gut, A.: Probability: A Graduate Course. Springer, New York 2005. DOI 10.1007/b138932 | MR 2125120 | Zbl 1267.60001
[16] Hoeffding, W.: Masstabinvariante Korrelationstheorie. Schriften des Matematischen Instituts und des Instituts fur Angewandte Mathematik der Universitat 1940.
[17] Hong, D.: A convergence of fuzzy random variables. Kybernetika 39 (2003), 275-280. MR 1995730 | Zbl 1249.60007
[18] Hong, D., Kim, K.: Weak law of large number for i.i.d. fuzzy random variables. Kybernetika 43 (2007), 87-96. MR 2343333
[19] Joo, S. Y., Kim, Y. K., Kwon, J S.: On Chung's type law of large numbers for fuzzy random variables. Stat. Prob. Lett. 74 (2005), 67-75. DOI 10.1016/j.spl.2005.04.030 | MR 2189077 | Zbl 1082.60022
[20] Klement, E. P., Puri, M. L., Ralescu, D. A.: Limit theorems for fuzzy random variables. Proc. Roy. Soc. London Ser. A 407 (1986), 171-182. DOI 10.1098/rspa.1986.0091 | MR 0861082 | Zbl 0605.60038
[21] Ko, M. H., Choi, Y. K., Choi, Y.-S.: Exponential probability inequality for linearly negative quadrant dependent random variables. Korean Math. Soc. Comm. 22 (2007), 1, 137-143. DOI 10.4134/ckms.2007.22.1.137 | MR 2286902 | Zbl 1168.60336
[22] Korner, R.: On the variance of fuzzy random variables. Fuzzy Set. Syst. 92 (1997), 83-93. DOI 10.1016/s0165-0114(96)00169-8 | MR 1481018 | Zbl 0936.60017
[23] Kwakernaak, H.: Fuzzy random variables I. Zbl 0438.60004
[24] Miranda, E., Couso, I., Gil, P.: Random sets as imprecise random variables. J. Math. Anal. Appl. 307 (2005), 32-47. DOI 10.1016/j.jmaa.2004.10.022 | MR 2138973 | Zbl 1077.60011
[25] Miyakoshi, M., Shimbo, M.: A strong law of large numbers for fuzzy random variables. Fuzzy Set. Syst. 12 (1984), 133-142. DOI 10.1016/0165-0114(84)90033-2 | MR 0734945 | Zbl 0551.60035
[26] Moore, R. E., Kearfott, R. B., Cloud, M. J.: Introduction to Interval Analysis. SIAM, Philadelphia 2009. DOI 10.1137/1.9780898717716 | MR 2482682 | Zbl 1168.65002
[27] Newman, C. M.: Asymptotic independence and limit theorems for positively and negatively dependent random variables. Statist. Probab. 5 (1984), 127-140. DOI 10.1214/lnms/1215465639 | MR 0789244
[28] Nguyen, H. T.: A note on the extension principle for fuzzy sets. J. Math. Anal. Appl. 64 (1978), 369-380. DOI 10.1016/0022-247x(78)90045-8 | MR 0480044 | Zbl 0377.04004
[29] Parchami, A., Mashinchi, M., Partovinia, V.: A consistent confidence interval for fuzzy capability index. Appl. Comput. Math. 7 (2008), 119-125. MR 2423023
[30] Puri, M. L., Ralescu, D. A.: Fuzzy random variables. J. Math. Anal. Appl. 114 (1986), 402-422. DOI 10.1515/9783110917833.452 | MR 0833596 | Zbl 0605.60038
[31] Puri, M. L., Ralescu, D. A.: Convergence theorem for fuzzy martingales. J. Math. Anal. Appl. 160 (1991), 107-122. DOI 10.1016/0022-247x(91)90293-9 | MR 1124080 | Zbl 0737.60005
[32] Ralescu, D. A.: Fuzzy random variables revisited. In: Math. Fuzzy Sets, Handbook Fuzzy Sets, Series 3 Kluwer, Boston 1999, pp. 701-710. DOI 10.1007/978-1-4615-5079-2_16 | MR 1788914 | Zbl 0971.60037
[33] Sadeghpour-Gildeh, B., Gien, D.: La distance-$D_{p,q}$ et le coeffcient de corrélation entre deux variables aléatoires floues. Actes de LFA'01, Monse-Belgium 2001, pp. 97-102.
[34] Shanchao, Y.: Moment inequalities for sums of products of independent random variables. Stat. Probab. Lett. 76 (2006), 1994-2000. DOI 10.1016/j.spl.2006.05.004 | MR 2329244 | Zbl 1107.60307
[35] Stojakovic, M.: Fuzzy martingalesa simple form of fuzzy processes. Stochast. Anal. Appl. 14 (1996), 3, 355-367. DOI 10.1080/07362999608809443 | MR 1393929
[36] Taylor, R. L., Seymour, L., Chen, Y.: Weak laws of large numbers for fuzzy random sets. Nonlinear Anal. 47 (2001), 1245-125. DOI 10.1016/s0362-546x(01)00262-0 | MR 1970734 | Zbl 1042.60502
[37] Viertl, R.: Statistical Methods for Fuzzy Data. John Wiley, Chichester 2011. DOI 10.1002/9780470974414 | MR 2759969 | Zbl 1101.62003
[38] Wang, J., Wu, Q.: Limiting behavior of the maximum of the partial sum for linearly negative quadrant dependent random variables under residual Ces` aro alpha-integrability assumption. J. Appl. Math. 2012 (2012), 1-10. DOI 10.1155/2012/735973 | MR 2898064
[39] Wang, J. F., Zhang, L. X.: A Berry-Esseen theorem for weakly negatively dependent random variables and its applications. Acta Math. Hungar. 110 (2006), 4, 293-308. DOI 10.1007/s10474-006-0024-x | MR 2213231 | Zbl 1121.60024
[40] Wu, H. C.: The laws of large numbers for fuzzy random variables. Fuzzy Sets Systems 116 (2000), 245-262. DOI 10.1016/s0165-0114(98)00414-x | MR 1788396 | Zbl 0971.60035
[41] Zhang, C. H.: Strong law of large numbers for sums of products. Ann. Probab. 24 (1996), 1589-1615. DOI 10.1214/aop/1065725194 | MR 1411507 | Zbl 0868.60024
Partner of
EuDML logo