[1] Adams, R. A.:
Sobolev Spaces. Pure and Applied Mathematics 65 Academic Press, New York (1975).
MR 0450957 |
Zbl 0314.46030
[3] ssaoui, N. Aï:
Another extension of Orlicz-Sobolev spaces to metric spaces. Abstr. Appl. Anal. 2004 (2004), 1-26.
MR 2058790
[5] Bennett, C., Sharpley, R.:
Interpolation of Operators. Pure and Applied Mathematics 129 Academic Press, Boston (1988).
MR 0928802 |
Zbl 0647.46057
[6] Björn, A., Björn, J.:
Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics, 17. European Mathematical Society Zürich (2011).
MR 2867756 |
Zbl 1231.31001
[7] Cruz-Uribe, D., Fiorenza, A.:
Variable Lebesgue Spaces. Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis Birkhäuser, Heidelberg (2013).
MR 3026953 |
Zbl 1268.46002
[8] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.:
Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017 Springer, Berlin (2011).
MR 2790542 |
Zbl 1222.46002
[9] Evans, L. C., Gariepy, R. F.:
Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics CRC Press, Boca Raton (1992).
MR 1158660 |
Zbl 0804.28001
[10] Futamura, T., Harjulehto, P., Hästö, P., Mizuta, Y., Shimomura, T.:
Variable exponent spaces on metric measure spaces. More Progresses in Analysis. Proc. of the 5th international ISAAC congress, Catania 2005 H. G. W. Begehr et al. World Scientific (2009), 107-121.
Zbl 1189.46027
[11] Futamura, T., Mizuta, Y., Shimomura, T.:
Sobolev embedding for variable exponent Riesz potentials on metric spaces. Ann. Acad. Sci. Fenn. Math. 31 (2006), 495-522.
MR 2248828
[12] Hajłasz, P.:
Sobolev spaces on an arbitrary metric space. Potential Anal. 5 (1996), 403-415.
Zbl 0859.46022
[13] Hajłasz, P., Koskela, P.:
Sobolev met Poincaré. Mem. Am. Math. Soc. 145 (2000), 101 pages.
MR 1683160 |
Zbl 0954.46022
[15] Harjulehto, P.:
Variable exponent Sobolev spaces with zero boundary values. Math. Bohem. 132 (2007), 125-136.
MR 2338802 |
Zbl 1174.46322
[17] Harjulehto, P., Hästö, P., Koskenoja, M.:
Properties of capacities in variable exponent Sobolev spaces. J. Anal. Appl. 5 (2007), 71-92.
MR 2314780 |
Zbl 1143.31003
[19] Harjulehto, P., Hästö, P., Koskenoja, M., Varonen, S.:
Sobolev capacity on the space $W^{1,p(\cdot)}(\mathbb R^n)$. J. Funct. Spaces Appl. 1 (2003), 17-33.
MR 2011498
[21] Harjulehto, P., Hästö, P., Pere, M.:
Variable exponent Lebesgue spaces on metric spaces: the Hardy-Littlewood maximal operator. Real Anal. Exch. 30 (2005), 87-103.
MR 2126796 |
Zbl 1072.42016
[23] Kilpeläinen, T.:
A remark on the uniqueness of quasi continuous functions. Ann. Acad. Sci. Fenn. Math. 23 (1998), 261-262.
MR 1601887 |
Zbl 0919.31006
[27] Kinnunen, J., Martio, O.:
Choquet property for the Sobolev capacity in metric spaces. S. K. Vodopyanov Proc. on Analysis and Geometry Sobolev Institute Press, Novosibirsk (2000), 285-290.
MR 1847522 |
Zbl 0992.46023
[28] Kinnunen, J., Martio, O.:
The Sobolev capacity on metric spaces. Ann. Acad. Sci. Fenn. Math. 21 (1996), 367-382.
MR 1404091 |
Zbl 0859.46023
[30] Mizuta, Y., Shimomura, T.:
Continuity of Sobolev functions of variable exponent on metric spaces. Proc. Japan Acad. Ser. A 80 (2004), 96-99.
MR 2075449 |
Zbl 1072.46506
[31] Musielak, J.:
Orlicz Spaces and Modular Spaces. Lecture Notes Math. 1034 Springer, Berlin (1983).
MR 0724434 |
Zbl 0557.46020
[33] Shanmugalingam, N.:
Newtonian space: An extension of Sobolev spaces to metric measure space. Rev. Mat. Iberoam. 16 (2000), 243-279.
DOI 10.4171/RMI/275 |
MR 1809341
[34] Tuominen, H.: Orlicz-Sobolev Spaces on Metric Spaces. Annales Academiæ Scientiarum Fennicæ. Mathematica. Dissertationes 135 (2004), Suomalainen Tiedeakatemia, Helsinki.