Previous |  Up |  Next

Article

Keywords:
Itô formula; Henstock-Kurzweil approach; Stratonovich integral
Summary:
We use the general Riemann approach to define the Stratonovich integral with respect to Brownian motion. Our new definition of Stratonovich integral encompass the classical Stratonovich integral and more importantly, satisfies the ideal Itô formula without the “tail” term, that is, $$ f(W_{t})= f(W_{0})+\int _{0}^{t}f'(W_{s})\circ {\rm d}W_{s}. $$ Further, the condition on the integrands in this paper is weaker than the classical one.
References:
[1] Chew, T.-S., Tay, J.-Y., Toh, T.-L.: The non-uniform Riemann approach to Itô's integral. Real Anal. Exch. 27 (2002), 495-514. DOI 10.14321/realanalexch.27.2.0495 | MR 1922665 | Zbl 1067.60025
[2] Durrett, R.: Probability: Theory and Examples. Cambridge University Press, Cambridge (2010). MR 2722836 | Zbl 1202.60001
[3] Gradinaru, M., Nourdin, I., Russo, F., Vallois, P.: {$m$}-order integrals and generalized Itô's formula: the case of a fractional Brownian motion with any Hurst index. Ann. Inst. Henri Poincaré, Probab. Stat. 41 (2005), 781-806. DOI 10.1016/j.anihpb.2004.06.002 | MR 2144234 | Zbl 1083.60045
[4] Karatzas, I., Shreve, S. E.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics 113 Springer, New York (1991). MR 1121940 | Zbl 0734.60060
[5] Kurzweil, J.: Henstock-Kurzweil Integration: Its Relation to Topological Vector Spaces. Series in Real Analysis 7 World Scientific, Singapore (2000). MR 1763305 | Zbl 0954.28001
[6] Lee, P. Y.: Lanzhou Lectures on Henstock Integration. Series in Real Analysis 2 World Scientific, London (1989). MR 1050957 | Zbl 0699.26004
[7] Lee, T. W.: On the generalized Riemann integral and stochastic integral. J. Aust. Math. Soc., Ser. A 21 (1976), 64-71. DOI 10.1017/S144678870001692X | MR 0435334 | Zbl 0314.28009
[8] Loo, K. P.: The Non-Uniform Riemann Approach to Anticipating Stochastic Integrals. Ph.D thesis. National University of Singapore Singapore (2002/2003). MR 2061311
[9] McShane, E. J.: Stochastic Calculus and Stochastic Models. Probability and Mathematical Statistics 25 Academic Press, New York (1974). MR 0443084 | Zbl 0292.60090
[10] Nourdin, I., Réveillac, A., Swanson, J.: The weak Stratonovich integral with respect to fractional Brownian motion with Hurst parameter 1/6. Electron. J. Probab. (electronic only) 15 (2010), Article No. 70, 2117-2162. DOI 10.1214/EJP.v15-843 | MR 2745728 | Zbl 1225.60089
[11] Øksendal, B.: Stochastic Differential Equations. An Introduction with Applications. Universitext Springer, Berlin (2003). MR 2001996 | Zbl 1025.60026
[12] Protter, P. E.: Stochastic Integration and Differential Equations. Stochastic Modelling and Applied Probability 21 Springer, Berlin (2004). MR 2020294 | Zbl 1041.60005
[13] Protter, P.: A comparison of stochastic integrals. Ann. Probab. 7 (1979), 276-289. DOI 10.1214/aop/1176995088 | MR 0525054 | Zbl 0404.60062
[14] Toh, T.-L., Chew, T.-S.: On Itô-Kurzweil-Henstock integral and integration-by-part formula. Czech. Math. J. 55 (2005), 653-663. DOI 10.1007/s10587-005-0052-7 | MR 2153089 | Zbl 1081.26005
[15] Toh, T.-L., Chew, T.-S.: The Riemann approach to stochastic integration using non-uniform meshes. J. Math. Anal. Appl. 280 (2003), 133-147. DOI 10.1016/S0022-247X(03)00059-3 | MR 1972197 | Zbl 1022.60055
[16] Toh, T.-L., Chew, T.-S.: A variational approach to Itô's integral. Trends in Probability and Related Analysis. Proc. Symp. Analysis and Probability (SAP'98), Taipei, Taiwan, 1998 World Scientific Publishing Singapore N. Kono et al. (1999), 291-299. MR 1819215 | Zbl 0981.60054
[17] Xu, J., Lee, P. Y.: Stochastic integrals of Itô and Henstock. Real Anal. Exch. 18 (1993), 352-366. MR 1228401 | Zbl 0806.28009
Partner of
EuDML logo