[1] Araya, R., Barrenechea, G. R., Poza, A. H., Valentin, F.:
Convergence analysis of a residual local projection finite element method for the Navier-Stokes equations. SIAM J. Numer. Anal. 50 (2012), 669-699.
DOI 10.1137/110829283 |
MR 2914281
[2] Chen, G., Feng, M., Zhou, H.:
Local projection stabilized method on unsteady Navier-Stokes equations with high Reynolds number using equal order interpolation. Appl. Math. Comput. 243 (2014), 465-481.
MR 3244494 |
Zbl 1335.76033
[5] Du, B., Su, H., Feng, X.:
Two-level variational multiscale method based on the decoupling approach for the natural convection problem. Int. Commun. Heat. Mass. 61 (2015), 128-139.
DOI 10.1016/j.icheatmasstransfer.2014.12.004
[7] He, Y.:
Stability and error analysis for a spectral Galerkin method for the Navier-Stokes equations with {$H^2$} or {$H^1$} initial data. Numer. Methods Partial Differ. Equations 21 (2005), 875-904.
DOI 10.1002/num.20065 |
MR 2154224 |
Zbl 1076.76059
[8] Heywood, J. G., Rannacher, R.:
Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19 (1982), 275-311.
DOI 10.1137/0719018 |
MR 0650052 |
Zbl 0487.76035
[10] Pyo, J. H.:
A classification of the second order projection methods to solve the Navier-Stokes equations. Korean J. Math. 22 (2014), 645-658.
DOI 10.11568/kjm.2014.22.4.645
[11] Qian, Y. X., Zhang, T.: On error estimates of the projection method for the time-dependent natural convection problem: first order scheme. Submitted to Comput. Math. Appl.
[12] Qian, Y. X., Zhang, T.: On error estimates of a higher projection method for the time-dependent natural convection problem. Submitted to Front. Math. China.
[14] Shen, J.:
On error estimates of some higher order projection and penalty-projection methods for Navier-Stokes equations. Numer. Math. 62 (1992), 49-73.
DOI 10.1007/BF01396220 |
MR 1159045
[15] Shen, S.:
The finite element analysis for the conduction-convection problems. Math. Numer. Sin. 16 (1994), 170-182 Chinese.
MR 1392611 |
Zbl 0922.76105
[18] Témam, R.:
Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. II. Arch. Ration. Mech. Anal. French 33 (1969), 377-385.
DOI 10.1007/BF00247696 |
MR 0244654 |
Zbl 0207.16904
[19] Témam, R.:
Navier-Stokes Equations. Theory and Numerical Analysis. Studies in Mathematics and Its Applications, Vol. 2 North-Holland, Amsterdam (1984).
MR 0609732 |
Zbl 0568.35002
[22] Zhang, T., Tao, Z.:
Decoupled scheme for time-dependent natural convection problem II: time semidiscreteness. Math. Probl. Eng. 2014 (2014), Article ID 726249, 23 pages.
MR 3294924
[23] Zhang, T., Yuan, J., Si, Z.:
Decoupled two-grid finite element method for the time-dependent natural convection problem I: Spatial discretization. Numer. Methods Partial Differ. Equations 31 (2015), 2135-2168.
DOI 10.1002/num.21987 |
MR 3403723 |
Zbl 1336.65172
[24] Zhang, X., Zhang, P.:
Meshless modeling of natural convection problems in non-rectangular cavity using the variational multiscale element free Galerkin method. Eng. Anal. Bound. Elem. 61 (2015), 287-300.
DOI 10.1016/j.enganabound.2015.08.005 |
MR 3400016