[1] Alfsen E.M.:
Compact Convex Sets and Boundary Integrals. Ergebnisse der Mathematik und ihrer Grenzgebiete, 57, Springer, New York, 1971.
MR 0445271 |
Zbl 0209.42601
[3] Effros E.G.:
On a class of complex Banach spaces. Illinois J. Math. 18 (1974), 48–59.
MR 0328548
[5] Fabian M., Habala P., Hájek P., Montesinos V., Zizler V.:
Banach Space Theory. The Basis for Linear and Nonlinear Analysis, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, New York, 2011.
MR 2766381 |
Zbl 1229.46001
[6] Hustad O.:
Intersection properties of balls in complex Banach spaces whose duals are ${L_1}$-spaces. Acta Math. 132 (1974), no. 1, 283–313.
DOI 10.1007/BF02392118 |
MR 0388049
[8] Lacey H.E.:
The Isometric Theory of Classical Banach Spaces. Die Grundlehren der mathematischen Wissenschaften, 208, Springer, New York, 1974.
MR 0493279 |
Zbl 0285.46024
[11] Ludvík P., Spurný J.:
Baire classes of $L_1$-preduals and $C^*$-algebras. Complex Banach spaces whose duals are $L_1$-spaces, Illinois J. Math. 58 (2014), no. 1, 97–112.
MR 3331842
[12] Ludvík P., Spurný J.:
Baire classes of nonseparable $L_1$-preduals. Q.J. Math. 66 (2015), no. 1, 251–263.
DOI 10.1093/qmath/hau007
[13] Ludvík P., Spurný J.:
Descriptive properties of elements of biduals of Banach spaces. Studia Math. 209 (2012), no. 1, 71–99.
DOI 10.4064/sm209-1-6 |
MR 2914930
[14] Lukeš J., Malý J., Netuka I., Spurný J.:
Integral Representation Theory. Applications to Convexity, Banach Spaces and Potential Theory, de Gruyter Studies in Mathematics, 35, Walter de Gruyter & Co., Berlin, 2010.
MR 2589994
[15] Lusky W.:
Every separable $L_1$-predual is complemented in a $C^*$-algebra. Studia Math. 160 (2004), no. 2, 103–116.
DOI 10.4064/sm160-2-1 |
MR 2033145
[16] Olsen G.H.:
On the classification of complex Lindenstrauss spaces. Mathematica Scand. 35 (1974), 237–258.
MR 0367626