[2] Bethuel, F.:
Weak limits of Palais-Smale sequences for a class of critical functionals. Calc. Var. Partial Differ. Equ. 1 (1993), 267-310.
DOI 10.1007/BF01191297 |
MR 1261547
[7] Hélein, F.:
Regularity of weakly harmonic maps between a surface and a Riemannian manifold. C. R. Acad. Sci., Paris, Sér. (1) 312 French (1991), 591-596.
MR 1101039
[11] Lions, P.-L.:
The concentration-compactness principle in the calculus of variations. The limit case. II. Rev. Mat. Iberoam. 1 (1985), 45-121.
DOI 10.4171/RMI/12 |
MR 0850686
[12] Mou, L., Wang, C.:
Bubbling phenomena of Palais-Smale-like sequences of $m$-harmonic type systems. Calc. Var. Partial Differ. Equ. 4 (1996), 341-367.
DOI 10.1007/BF01190823 |
MR 1393269
[14] Sacks, J., Uhlenbeck, K.:
The existence of minimal immersions of 2-spheres. Ann. Math. (2) 113 (1981), 1-24.
MR 0604040
[17] Tartar, L.:
Imbedding theorems of Sobolev spaces into Lorentz spaces. Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 1 (1998), 479-500.
MR 1662313
[20] Zheng, S.:
Weak compactness of biharmonic maps. Electron. J. Differ. Equ. (electronic only) 2012 (2012), Article No. 190, 7 pages.
MR 3001676 |
Zbl 1288.31012