Previous |  Up |  Next

Article

Keywords:
multi-objective game; Pareto-optimal security strategies; security level; multi-objective linear programming
Summary:
A class of multi-objective fuzzy matrix games is studied and it is shown that solving such a game is equivalent to solving a pair of multi-objective linear programming problems. This work generalizes an earlier study of Fernandez et al. [7] from crisp scenario to fuzzy scenario on the lines of Bector et al. [4]. Further certain difficulties with similar studies reported in the literature are also discussed.
References:
[1] Bellman, R. E., Zadeh, L. A.: Decision making in a fuzzy environment. Management Sci. 17 (1970), 141-164. DOI 10.1287/mnsc.17.4.b141 | MR 0301613 | Zbl 0224.90032
[2] Blackwell, D.: An analog of the minimax theorem for vector payoff. Pacific J. Math. 6 (1956), 1-8. DOI 10.2140/pjm.1956.6.1 | MR 0081804
[3] Bector, C. R., Chandra, S., Vijay, V.: Matrix games with fuzzy goals and fuzzy linear programming duality. Fuzzy Optim. Decision Making 3 (2004), 263-277. DOI 10.1023/b:fodm.0000036866.18909.f1 | MR 2102800
[4] Bector, C. R., Chandra, S.: Fuzzy Mathematical Programming and Fuzzy Matrix Games. Springer-Verlag, Berlin 2005. DOI 10.1007/3-540-32371-6 | Zbl 1078.90071
[5] Cook, W. D.: Zero-sum games with multiple goals. Naval Research Logistics Quarterly 23 (1976), 615-622. DOI 10.1002/nav.3800230406 | MR 0444058 | Zbl 0371.90125
[6] Corley, S. C.: Games with vector payoffs. J. Optim. Theory Appl. 47 (1985), 463-475. DOI 10.1007/bf00942194 | MR 0818874 | Zbl 0556.90095
[7] Fernandez, F. R., Puerto, J.: Vector linear programming in zero-sum multicriteria matrix games. J. Optim. Theory Appl. 89 (1996), 115-127. DOI 10.1007/bf02192644 | MR 1382533 | Zbl 0866.90139
[8] Ghose, D., Prasad, U. R.: A solution concepts in two-person multicriteria games. J. Optim. Theory Appl. 63 (1989), 167-189. DOI 10.1007/bf00939572 | MR 1026863
[9] Gaskó, N., Suciu, M., Lung, R. I., Dumitrescu, D.: Pareto-optimal Nash equilibrium detection using an evolutionary approach. Acta Univ. Sapientiae 4 (2012), 2, 237-246.
[10] Mavrotas, G.: Generation of Efficient Solutions in Multiobjective Mathematical Programming Problems Using GAMS. Effective Implementation of the $\epsilon$-constraint Method. Technical Report: http://www.gams.com/modlib/adddocs/epscm.pdf (2007), 167-189.
[11] Nishizaki, I., Sakawa, M.: Fuzzy and Multiobjective Games for Conflict Resolution. Kluwer Academic Publishers 2003. DOI 10.1007/978-3-7908-1830-7 | Zbl 0973.91001
[12] Sakawa, M., Nishizaki, I.: Max-min solutions for fuzzy multi-objective mattrix games. Fuzzy Sets and Systems 67 (1994), 53-69. DOI 10.1016/0165-0114(94)90208-9 | MR 1300301
[13] Steuer, R. E.: Multiple Criteria Optimization: Theory, Computation and Application. John Wiley, New York 1986. MR 0836977 | Zbl 0742.90068
[14] Shapely, L. S.: Equilibirum points in games with vector payoff. Naval Research Logistics Quarterly 6 (1959), 57-61. DOI 10.1002/nav.3800060107 | MR 0109748
[15] Vijay, V., Mehra, A., Chandra, S., Bector, C. R.: Fuzzy matrix games via a fuzzy relation approach. Fuzzy Optim. Decision Making 6 (2007), 299-314. DOI 10.1007/s10700-007-9015-9 | MR 2365211 | Zbl 1151.91319
[16] Zeleny, M.: Games with multiple payoff. Int. J. Game Theory 4 (1975), 179-191. DOI 10.1007/bf01769266 | MR 0401181
[17] Zimmermann, H. J.: Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems1 (1978), 45-55. DOI 10.1016/0165-0114(78)90031-3 | MR 0496734 | Zbl 0548.90076
Partner of
EuDML logo