Previous |  Up |  Next

Article

Title: An ordered structure of pseudo-BCI-algebras (English)
Author: Chajda, Ivan
Author: Länger, Helmut
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 141
Issue: 1
Year: 2016
Pages: 91-98
Summary lang: English
.
Category: math
.
Summary: In Chajda's paper (2014), to an arbitrary BCI-algebra the author assigned an ordered structure with one binary operation which possesses certain antitone mappings. In the present paper, we show that a similar construction can be done also for pseudo-BCI-algebras, but the resulting structure should have two binary operations and a set of couples of antitone mappings which are in a certain sense mutually inverse. The motivation for this approach is the well-known fact that every commutative BCK-algebra is in fact a join-semilattice and we try to obtain a similar result also for the non-commutative case and for pseudo-BCI-algebras which generalize BCK-algebras, see e.g. Imai and Iséki (1966) and Iséki (1966). (English)
Keyword: pseudo-BCI-algebra
Keyword: directoid
Keyword: antitone mapping
Keyword: pseudo-BCI-structure
MSC: 03G25
MSC: 06F35
idZBL: Zbl 06562161
idMR: MR3475140
DOI: 10.21136/MB.2016.7
.
Date available: 2016-03-17T19:48:48Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/144854
.
Reference: [1] Chajda, I.: A structure of BCI-algebras.Int. J. Theor. Phys. 53 (2014), 3391-3396. Zbl 1302.81032, MR 3253801, 10.1007/s10773-013-1739-4
Reference: [2] Chajda, I., Länger, H.: On the structure of pseudo-BCK algebras.(to appear) in J. Multiple-Valued Logic Soft Computing.
Reference: [3] Chajda, I., L{ä}nger, H.: Directoids. An Algebraic Approach to Ordered Sets.Research and Exposition in Mathematics 32 Heldermann, Lemgo (2011). Zbl 1254.06002, MR 2850357
Reference: [4] Ciungu, L. C.: Non-commutative Multiple-Valued Logic Algebras.Springer Monographs in Mathematics Springer, Cham (2014). Zbl 1279.03003, MR 3112745
Reference: [5] Dudek, W. A., Jun, Y. B.: Pseudo-BCI algebras.East Asian Math. J. 24 (2008), 187-190. Zbl 1149.06010
Reference: [6] Dymek, G.: On two classes of pseudo-BCI-algebras.Discuss. Math., Gen. Algebra Appl. 31 (2011), 217-229. Zbl 1258.06014, MR 2953913, 10.7151/dmgaa.1184
Reference: [7] Dymek, G., Kozanecka-Dymek, A.: Pseudo-BCI-logic.Bull. Sect. Log., Univ. Łódź, Dep. Log. 42 (2013), 33-42. Zbl 1287.03058, MR 3077651
Reference: [8] Imai, Y., Iséki, K.: On axiom systems of propositional calculi. XIV.Proc. Japan Acad. 42 (1966), 19-22. Zbl 0156.24812, MR 0195704
Reference: [9] Is{é}ki, K.: An algebra related with a propositional calculus.Proc. Japan Acad. 42 (1966), 26-29. Zbl 0207.29304, MR 0202571
.

Files

Files Size Format View
MathBohem_141-2016-1_7.pdf 220.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo