[4] Chattopadhyay, A., Gupta, S., Singh, A. K., Sahu, S. A.:
Propagation of shear waves in an irregular magnetoelastic monoclinic layer sandwiched between two isotropic half-spaces. International Journal of Engineering, Science and Technology 1 (2009), 228-244.
MR 2380170
[6] Dutta, S.:
On the propagation of Love type waves in an infinite cylinder with rigidity and density varying linearly with the radial distance. Pure Appl. Geophys. 98 (1972), 35-39.
DOI 10.1007/BF00875578
[7] Lions, J. L.:
Quelques méthodes de résolution des problèmes aux limites nonlinéaires. Dunod; Gauthier-Villars, Paris (1969), French.
MR 0259693
[11] Nakao, M., Ono, K.:
Global existence to the Cauchy problem of the semilinear wave equation with a nonlinear dissipation. Funkc. Ekvacioj, Ser. Int. 38 (1995), 417-431.
MR 1374429 |
Zbl 0855.35081
[13] Ngoc, L. T. P., Duy, N. T., Long, N. T.:
Existence and properties of solutions of a boundary problem for a Love's equation. Bull. Malays. Math. Sci. Soc. (2) 37 (2014), 997-1016.
MR 3295564 |
Zbl 1304.35231
[16] Ogino, T., Takeda, S.:
Computer simulation and analysis for the spherical and cylindrical ion-acoustic solitons. J. Phys. Soc. Japan 41 (1976), 257-264.
DOI 10.1143/JPSJ.41.257
[17] Paul, M. K.:
On propagation of Love-type waves on a spherical model with rigidity and density both varying exponentially with the radial distance. Pure Appl. Geophys. 59 (1964), 33-37.
DOI 10.1007/BF00880505 |
Zbl 0135.23902
[18] Radochová, V.:
Remark to the comparison of solution properties of Love's equation with those of wave equation. Apl. Mat. 23 (1978), 199-207.
MR 0492985
[20] Truong, L. X., Ngoc, L. T. P., Dinh, A. P. N., Long, N. T.:
Existence, blow-up and exponential decay estimates for a nonlinear wave equation with boundary conditions of two-point type. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 6933-6949.
DOI 10.1016/j.na.2011.07.015 |
MR 2833683 |
Zbl 1227.35075