[1] Adams, R. A.:
Sobolev Spaces. Pure and Applied Mathematics 65 Academic Press, New York (1975).
MR 0450957 |
Zbl 0314.46030
[6] Ciarlet, P. G.:
The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications. Vol. 4 North-Holland Publishing Company, Amsterdam (1978).
MR 0520174 |
Zbl 0383.65058
[7] Crank, J., Nicolson, P.:
A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Proc. Camb. Philos. Soc. 43 (1947), 50-67 Reprint in Adv. Comput. Math. 6 (1996), 207-226.
DOI 10.1017/S0305004100023197 |
MR 0019410 |
Zbl 0866.65054
[12] He, Y., Sun, W.:
Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations. SIAM J. Numer. Anal. 45 (2007), 837-869.
DOI 10.1137/050639910 |
MR 2300299 |
Zbl 1145.35318
[14] Hecht, F., Pironneau, O., Hyaric, A. Le, Ohtsuka, K.:
FREEFEM++, version 2.3-3, 2008. Software available at http://www.freefem.org</b>
[15] Heywood, J. G., Rannacher, R.:
Finite-element approximation of the nonstationary Navier-Stokes problem. IV. Error analysis for second-order time discretization. SIAM J. Numer. Anal. 27 (1990), 353-384.
DOI 10.1137/0727022 |
MR 1043610 |
Zbl 0694.76014
[18] Luo, Z., Liu, R.:
Mixed finite element analysis and numerical simulation for Burgers equation. Math. Numer. Sin. 21 (1999), 257-268 Chinese.
MR 1762984 |
Zbl 0933.65117
[20] Shang, Y.:
Initial-boundary value problems for a class of generalized KdV-Burgers equations. Math. Appl. 9 (1996), 166-171 Chinese.
MR 1405073 |
Zbl 0937.35164