Previous |  Up |  Next

Article

Keywords:
left-invariant control system; state space equivalence; detached feedback equivalence
Summary:
We consider state space equivalence and feedback equivalence in the context of (full-rank) left-invariant control systems on Lie groups. We prove that two systems are state space equivalent (resp.~detached feedback equivalent) if and only if there exists a Lie group isomorphism relating their parametrization maps (resp. traces). Local analogues of these results, in terms of Lie algebra isomorphisms, are also found. Three illustrative examples are provided.
References:
[1] Adams, R.M., Biggs, R., Remsing, C.C.: Equivalence of control systems on the Euclidean group SE(2). Control Cybernet., 41, 2012, 513-524, MR 3087026 | Zbl 1318.93028
[2] Agrachev, A.A., Sachkov, Y.L.: Control Theory from the Geometric Viewpoint. 2004, Springer Science & Business Media, MR 2062547 | Zbl 1062.93001
[3] Biggs, R., Remsing, C.C.: A category of control systems. An. Şt. Univ. Ovidius Constanţa, 20, 2012, 355-368, MR 2928428 | Zbl 1274.93062
[4] Biggs, R., Remsing, C.C.: Control affine systems on semisimple three-dimensional Lie groups. An. Şt. Univ. “A.I. Cuza” Iaşi. Ser. Mat., 59, 2013, 399-414, MR 3252448 | Zbl 1299.93049
[5] Biggs, R., Remsing, C.C.: Control affine systems on solvable three-dimensional Lie groups, I. Arch. Math. (Brno), 49, 2013, 187-197, DOI 10.5817/AM2013-3-187 | MR 3144181 | Zbl 1299.93050
[6] Biggs, R., Remsing, C.C.: Control affine systems on solvable three-dimensional Lie groups, II. Note Mat., 33, 2013, 19-31, MR 3178571 | Zbl 1287.93022
[7] Brockett, R.W.: System theory on group manifolds and coset spaces. SIAM J. Control, 10, 1972, 265-284, DOI 10.1137/0310021 | MR 0315559 | Zbl 0253.93003
[8] Elkin, V.I.: Affine control systems: their equivalence, classification, quotient systems, and subsystems. J. Math. Sci., 88, 1998, 675-721, DOI 10.1007/BF02364666 | MR 1613095 | Zbl 0953.93020
[9] Gardner, R.B., Shadwick, W.F.: Feedback equivalence of control systems. Systems Control Lett., 8, 1987, 463-465, MR 0890084 | Zbl 0691.93023
[10] Gorbatsevich, V.V., Onishchik, A.L., Vinberg, E.B.: Foundations of Lie Theory and Lie Transformation Groups. 1997, Springer Science & Business Media, MR 1631937 | Zbl 0999.17500
[11] Jakubczyk, B.: Equivalence and invariants of nonlinear control systems. Nonlinear Controllability and Optimal Control , 1990, 177-218, Marcel Dekker, In: H.J. Sussmann (ed.). MR 1061386 | Zbl 0712.93027
[12] Jakubczyk, B.: Critical {H}amiltonians and feedback invariants. Geometry of Feedback and Optimal Control , 1998, 219-256, Marcel Dekker, In: B. Jakubczyk, W. Respondek (eds.). MR 1493015 | Zbl 0925.93136
[13] Jakubczyk, B., Respondek, W.: On linearization of control systems. Bull. Acad. Polon. Sci. Ser. Sci. Math., 28, 1980, 517-522, MR 0629027 | Zbl 0489.93023
[14] Jurdjevic, V.: Geometric Control Theory. 1997, Cambridge University Press, MR 1425878 | Zbl 0940.93005
[15] Jurdjevic, V., Sussmann, H.J.: Control systems on Lie groups. J. Diff. Equations, 12, 1972, 313-329, DOI 10.1016/0022-0396(72)90035-6 | MR 0331185 | Zbl 0237.93027
[16] Krener, A.J.: On the equivalence of control systems and the linearization of nonlinear systems. SIAM J. Control, 11, 1973, 670-676, DOI 10.1137/0311051 | MR 0343967 | Zbl 0243.93009
[17] Remsing, C.C.: Optimal control and Hamilton-Poisson formalism. Int. J. Pure Appl. Math., 59, 2010, 11-17, MR 2642777 | Zbl 1206.49006
[18] Respondek, W., Tall, I.A.: Feedback equivalence of nonlinear control systems: a survey on formal approach. Chaos in Automatic Control, 2006, 137-262, In: W. Perruquetti, J.-P. Barbot (eds.). MR 2283271 | Zbl 1203.93039
[19] Sachkov, Y.L.: Control theory on Lie groups. J. Math. Sci., 156, 2009, 381-439, DOI 10.1007/s10958-008-9275-0 | MR 2373391 | Zbl 1211.93038
[20] Sussmann, H.J.: An extension of a theorem of Nagano on transitive Lie algebras. Proc. Amer. Math. Soc., 45, 1974, 349-356, DOI 10.1090/S0002-9939-1974-0356116-6 | MR 0356116 | Zbl 0301.58003
[21] Sussmann, H.J.: Lie brackets, real analyticity and geometric control. Differential Geometric Control Theory, 1983, 1-116, Birkhäuser, In: R.W. Brockett, R.S. Millman, H.J. Sussmann (eds.). MR 0708500 | Zbl 0545.93002
Partner of
EuDML logo