Previous |  Up |  Next

Article

Keywords:
elliptic hypergeometric function; hypergeometric series on root systems; basic hypergeometric integrals; hyperbolic hypergeometric integrals; superconformal index; supersymmetric duality; Seiberg duality; mirror symmetry
Summary:
The purpose of these notes is to give a short survey of an interesting connection between partition functions of supersymmetric gauge theories and hypergeometric functions and to present the recent progress in this direction.
References:
[1] Aharony, O., Hanany, A., Intriligator, K.A., Seiberg, N., Strassler, M.: Aspects of $N=2$ supersymmetric gauge theories in three-dimensions. Nuclear Phys. B 499 (1997), 67–99, http://arxiv.org/abs/hep-th/9703110, arXiv:hep-th/9703110 [hep-th]. DOI 10.1016/S0550-3213(97)00323-4 | MR 1468698 | Zbl 0934.81063
[2] Al-Salam, W.A., Ismail, M.E.H.: $q$-beta integrals and the $q$-Hermite polynomials. Pacific J. Math. 135 2) (1988), 209–221, http://dx.doi.org/10.2140/pjm.1988.135.209 DOI 10.2140/pjm.1988.135.209 | MR 0968609 | Zbl 0658.33002
[3] Amariti, A., Klare, C.: A journey to 3d: exact relations for adjoint SQCD from dimensional reduction. http://arxiv.org/abs/1106.2484, arXiv:1409.8623 [hep-th].
[4] Askey, R.: Ramanujan’s extensions of the gamma and beta functions. Amer. Math. Monthly 87 (5) (1980), 346–359, http://dx.doi.org/10.2307/2321202 DOI 10.2307/2321202 | MR 0567718 | Zbl 0437.33001
[5] Askey, R., Wilson, J.A.: Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Amer. Math. Soc. 54 (319) (1985), iv+55 pp. MR 0783216 | Zbl 0572.33012
[6] Benini, F., Cremonesi, S.: Partition functions of ${\mathcal{N}=(2,2)}$ gauge theories on S$^{2}$ and vortices. Comm. Math. Phys. 334 (3) (2015), 62 pages + 16 of appendices, http://arxiv.org/abs/1206.2356, arXiv:1206.2356 [hep-th]. DOI 10.1007/s00220-014-2112-z | MR 3312441 | Zbl 1308.81131
[7] Bhattacharya, J., Minwalla, S.: Superconformal indices for $N = 6$ Chern Simons theories. JHEP 0901 (014) (2009), 13 pp., http://dx.doi.org/10.1088/1126-6708/2009/01/014 DOI 10.1088/1126-6708/2009/01/014 | MR 2480370
[8] de Boer, J., Hori, K., Oz, Y., Yin, Z.: Branes and mirror symmetry in $N=2$ supersymmetric gauge theories in three-dimensions. Nuclear Phys. B 502 (1997), 107–124, http://arxiv.org/abs/hep-th/9702154, arXiv:hep-th/9702154 [hep-th]. MR 1477860
[9] Dimofte, T., Gaiotto, D.: An E7 Surprise. JHEP 1210 (129) (2012), 37pp., arXiv:1209.1404 [hep-th].
[10] Dolan, F., Osborn, H.: Applications of the superconformal index for protected operators and $q$-hypergeometric identities to $N=1$ dual theories. Nuclear Phys. B 818 (2009), 137–178, http://arxiv.org/abs/0801.4947, arXiv:0801.4947 [hep-th]. MR 2518083
[11] Dolan, F., Spiridonov, V., Vartanov, G.: From 4d superconformal indices to 3d partition functions. Phys. Lett. B 704 (2011), 234–241, http://arxiv.org/abs/1104.1787, arXiv:1104.1787 [hep-th]. DOI 10.1016/j.physletb.2011.09.007 | MR 2843616
[12] Doroud, N., Gomis, J., Le Floch, B., Lee, S.: Exact Results in D=2 Supersymmetric Gauge Theories. JHEP 1305 (093) (2013), http://arxiv.org/abs/1206.2606, arXiv:1206.2606 [hep-th]. MR 3080568 | Zbl 1342.81573
[13] Felder, G., Varchenko, A.: The elliptic gamma function and $SL(3,{\mathbf{Z}})\ltimes{\mathbf{Z}}^3$. Adv. Math 156 (1) (2000), 44–76, http://dx.doi.org/http://dx.doi.org/10.1006/aima.2000.1951, http://arxiv.org/abs/math/9907061, arXiv:math/9907061. DOI 10.1006/aima.2000.1951 | MR 1800253
[14] Frenkel, I.B., Turaev, V.G.: Elliptic solutions of the Yang-Baxter equation and modular hypergeometric functions. The Arnold-Gelfand Mathematical Seminars, 1997, http://dx.doi.org/10.1007/978-1-4612-4122-5_9, pp. 171–204. DOI 10.1007/978-1-4612-4122-5_9 | MR 1429892 | Zbl 0974.17016
[15] Gadde, A., Yan, W.: Reducing the 4d index to the $S^3$ partition function. JHEP 1212 (003) (2012), 12 pp., http://arxiv.org/abs/1104.2592, arXiv:1104.2592 [hep-th]. MR 3045303
[16] Gahramanov, I., Rosengren, H.:
[17] Gahramanov, I., Rosengren, H.: Integral pentagon relations for 3d superconformal indices. http://arxiv.org/abs/1412.2926, arXiv:1412.2926 [hep-th].
[18] Gahramanov, I., Rosengren, H.: A new pentagon identity for the tetrahedron index. JHEP 1311 (2013), http://dx.doi.org/10.1007/JHEP11(2013)128, http://arxiv.org/abs/1309.2195, arXiv:1309.2195 [hep-th]. DOI 10.1007/JHEP11(2013)128
[19] Gahramanov, I., Spiridonov, V.P.: The star-triangle relation and 3d superconformal indices. JHEP 1508 040 (2015), http://dx.doi.org/10.1007/JHEP08(2015)040 DOI 10.1007/JHEP08(2015)040 | MR 3402125
[20] Gahramanov, I., Vartanov, G.: Extended global symmetries for 4D $N = 1$ SQCD theories. J. Phys. A 46 (2013), 285403, http://dx.doi.org/10.1088/1751-8113/46/28/285403, http://arxiv.org/abs/1303.1443, arXiv:1303.1443 [hep-th]. DOI 10.1088/1751-8113/46/28/285403 | MR 3083462
[21] Gahramanov, I.B., Vartanov, G.S.: Superconformal indices and partition functions for supersymmetric field theories. XVIIth Intern. Cong. Math. Phys. (2013), 695–703, http://dx.doi.org/10.1142/9789814449243_0076, http://arxiv.org/abs/1310.8507, arXiv:1310.8507 [hep-th]. DOI 10.1142/9789814449243_0076 | MR 3204521
[22] Gasper, G., Rahman, M.: Basic hypergeometric series. second ed., Cambridge University Press, 2004. MR 2128719 | Zbl 1129.33005
[23] Imamura, Y.: Relation between the 4d superconformal index and the $S^3$ partition function. JHEP 1109 (133) (2011), 20 pp., http://arxiv.org/abs/1104.4482, arXiv:1104.4482 [hep-th]. MR 2889831
[24] Imamura, Y., Yokoyama, S.: Index for three dimensional superconformal field theories with general R-charge assignments. JHEP 1104 (2011), 22 pp., http://arxiv.org/abs/1101.0557, arXiv:1101.0557 [hep-th]. MR 2833291 | Zbl 1250.81107
[25] Intriligator, K.A.: New RG fixed points and duality in supersymmetric SP(N(c)) and SO(N(c)) gauge theories. Nuclear Phys. B 448 (1995), 187–198, http://arxiv.org/abs/hep-th/9505051, arXiv:hep-th/9505051 [hep-th]. MR 1352405 | Zbl 1009.81573
[26] Intriligator, K.A., Seiberg, N.: Mirror symmetry in three-dimensional gauge theories. Phys. Lett. B 387 (1996), 513–519, http://arxiv.org/abs/hep-th/9607207, arXiv:hep-th/9607207 [hep-th]. DOI 10.1016/0370-2693(96)01088-X | MR 1413696
[27] Kapustin, A., Willet, B.: Generalized superconformal index for three dimensional field theories. http://arxiv.org/abs/1106.2484, arXiv:1106.2484 [hep-th].
[28] Kim, S.: The complete superconformal index for $N=6$ Chern-Simons theory. Nuclear Phys. B 821 (2009), 241–284, http://dx.doi.org/10.1016/j.nuclphysb.2012.07.015, 10.1016/j.nuclphysb.2009.06.025. DOI 10.1016/j.nuclphysb.2009.06.025 | MR 2562335
[29] Kinney, J., Maldacena, J.M., Minwalla, S., Raju, S.: An index for 4 dimensional super conformal theories. Comm. Math. Phys. 275 (2007), 209–254, http://dx.doi.org/10.1007/s00220-007-0258-7, http://arxiv.org/abs/hep-th/0510251, arXiv:hep-th/0510251 [hep-th]. DOI 10.1007/s00220-007-0258-7 | MR 2335774 | Zbl 1122.81070
[30] Krattenthaler, C., Spiridonov, V., Vartanov, G.: Superconformal indices of three-dimensional theories related by mirror symmetry. JHEP 1106 (008) (2011), http://dx.doi.org/10.1007/JHEP06(2011)008, http://arxiv.org/abs/1103.4075, arXiv:1103.4075 [hep-th]. DOI 10.1007/JHEP06(2011)008 | MR 2870861 | Zbl 1298.81186
[31] Narukawa, A.: The modular properties and the integral representations of the multiple elliptic gamma functions. Adv. Math. 189 (2) (2004), 247–267, http://arxiv.org/abs/math/0306164, arXiv:math/0306164. DOI 10.1016/j.aim.2003.11.009 | MR 2101221 | Zbl 1077.33024
[32] Nassrallah, B., Rahman, M.: Projection formulas, a reproducing Kernel and a generating function for $q$-Wilson polynomials. SIAM J. Math. Anal. 16 (1) (1985), 186–197, http://dx.doi.org/10.1137/0516014 DOI 10.1137/0516014 | MR 0772878 | Zbl 0564.33009
[33] Nishizawa, M.: An elliptic analogue of the multiple gamma function. J. Phys. A 34 (36) (2001), 7411–7421. DOI 10.1088/0305-4470/34/36/320 | MR 1862776 | Zbl 0993.33016
[34] Pestun, V.: Localization of gauge theory on a four-sphere and supersymmetric Wilson loops. Comm. Math. Phys. 313 (71) (2012), 63 pp., http://arxiv.org/abs/0712.2824, arXiv:0712.2824 [hep-th]. DOI 10.1007/s00220-012-1485-0 | MR 2928219 | Zbl 1257.81056
[35] Rahman, M.: An integral representation of a $_{10}\varphi _9$ and continuous bi-orthogonal $_{10}\varphi _9$. Canad. J. Math. 38 3) (1986), 605–618, http://dx.doi.org/10.4153/CJM-1986-030-6 DOI 10.4153/CJM-1986-030-6 | MR 0845667
[36] Rains, E.M.: Transformations of elliptic hypergeometric integrals. Ann. Math. 171 (1) (2010), 169–243, http://dx.doi.org/10.4007/annals.2010.171.169, http://arxiv.org/abs/math/0309252, arXiv:math/0309252. DOI 10.4007/annals.2010.171.169 | MR 2630038 | Zbl 1209.33014
[37] Romelsberger, C.: Calculating the superconformal index and Seiberg duality. http://arxiv.org/abs/0707.3702, arXiv:0707.3702 [hep-th].
[38] Romelsberger, C.: Counting chiral primaries in $N = 1$, $d=4$ superconformal field theories. Nuclear Phys. B 747 (2006), 329–353, http://dx.doi.org/10.1016/j.nuclphysb.2006.03.037, http://arxiv.org/abs/hep-th/0510060, arXiv:hep-th/0510060 [hep-th]. DOI 10.1016/j.nuclphysb.2006.03.037 | MR 2241553
[39] Rosengren, H.: Elliptic hypergeometric series on root systems. Adv. Math. 181 (2) (2004), 417–447, http://dx.doi.org/10.1016/S0001-8708(03)00071-9, http://arxiv.org/abs/math/0207046, arXiv:math/0207046. DOI 10.1016/S0001-8708(03)00071-9 | MR 2026866 | Zbl 1066.33017
[40] Rosengren, H.: Felder’s elliptic quantum group and elliptic hypergeometric series on the root system $A_n$. Int. Math. Res. Not. 2011 (2011), 2861–2920, http://dx.doi.org/10.1093/imrn/rnq184, http://arxiv.org/abs/1003.3730, arXiv:1003.3730. DOI 10.1093/imrn/rnq184 | MR 2817682 | Zbl 1243.17010
[41] Ruijsenaars, S.N.M.: First order analytic difference equations and integrable quantum systems. J. Math. Phys. 38 (2) (1997), 1069–1146, http://dx.doi.org/10.1063/1.531809 DOI 10.1063/1.531809 | MR 1434226 | Zbl 0877.39002
[42] Seiberg, N.: Electric-magnetic duality in supersymmetric non-Abelian gauge theories. Nuclear Phys. B 435 (1995), 129–146, http://dx.doi.org/10.1016/0550-3213(94)00023-8 DOI 10.1016/0550-3213(94)00023-8 | MR 1314365 | Zbl 1020.81912
[43] Spiridonov, V.: Modified elliptic gamma functions and 6d superconformal indices. http://arxiv.org/abs/1211.2703, arXiv:1211.2703 [hep-th]. MR 3177989 | Zbl 1303.81195
[44] Spiridonov, V., Vartanov, G.: Elliptic hypergeometry of supersymmetric dualities II. Orthogonal groups, knots, and vortices. http://arxiv.org/abs/1107.5788, arXiv:1107.5788 [hep-th]. MR 3148094 | Zbl 1285.81064
[45] Spiridonov, V., Vartanov, G.: Superconformal indices for $N = 1$ theories with multiple duals. Nuclear Phys. B 824 (2010), 192–216, http://dx.doi.org/10.1016/j.nuclphysb.2009.08.022, http://arxiv.org/abs/0811.1909, arXiv:0811.1909 [hep-th]. DOI 10.1016/j.nuclphysb.2009.08.022 | MR 2556156
[46] Spiridonov, V., Vartanov, G.: Supersymmetric dualities beyond the conformal window. Phys. Rev. Lett. 105 (2010), 061603, http://dx.doi.org/10.1103/PhysRevLett.105.061603, http://arxiv.org/abs/1003.6109, arXiv:1003.6109 [hep-th]. DOI 10.1103/PhysRevLett.105.061603 | MR 2673041
[47] Spiridonov, V., Vartanov, G.: Elliptic hypergeometry of supersymmetric dualities. Comm. Math. Phys. 304 (2011), 797–874, http://dx.doi.org/10.1007/s00220-011-1218-9 DOI 10.1007/s00220-011-1218-9 | MR 2794548 | Zbl 1225.81137
[48] Spiridonov, V., Vartanov, G.: Elliptic hypergeometric integrals and $^{\prime }t$ Hooft anomaly matching conditions. JHEP 1206 (016) (2012), 18 pp., http://dx.doi.org/10.1007/s00220-011-1218-9 DOI 10.1007/s00220-011-1218-9 | MR 3006892
[49] Spiridonov, V.P.: On the elliptic beta function. Russian Math. Surveys 56 (1) (2001), 185–186, http://dx.doi.org/10.1070/RM2001v056n01ABEH000374 DOI 10.1070/RM2001v056n01ABEH000374 | MR 1846786 | Zbl 0997.33009
[50] Spiridonov, V.P.: Theta hypergeometric integrals. Algebra i Analiz 15 (6) (2003), 161–215, http://dx.doi.org/10.1090/S1061-0022-04-00839-8, http://arxiv.org/abs/arXiv:math/0303205, arXiv:math/0303205. DOI 10.1090/S1061-0022-04-00839-8 | MR 2044635
[51] Spiridonov, V.P.: Essays on the theory of elliptic hypergeometric functions. Russian Math. Surveys 63 (3) (2008), 405–472, http://dx.doi.org/10.1070/RM2008v063n03ABEH004533 DOI 10.1070/RM2008v063n03ABEH004533 | MR 2479997 | Zbl 1173.33017
[52] Stokman, J.V.: Hyperbolic beta integrals. Adv. Math. 190 (1) (2005), 119–160, http://arxiv.org/abs/math/0303178, arXiv:math/0303178. DOI 10.1016/j.aim.2003.12.003 | MR 2104907 | Zbl 1072.33012
[53] Tizzano, L., Winding, J.: Multiple sine, multiple elliptic gamma functions and rational cones. http://arxiv.org/abs/1502.05996, arXiv:1502.05996 [math.CA].
[54] van de Bult, F.J.: Hyperbolic hypergeometric functions. Ph.D. thesis, University of Amsterdam, 2007.
[55] van de Bult, F.J.: An elliptic hypergeometric integral with $W(F_4)$ symmetry. Ramanujan J. 25 (1) (2011), 1–20, http://dx.doi.org/10.1007/s11139-010-9273-y, http://arxiv.org/abs/0909.4793, arXiv:0909.4793. DOI 10.1007/s11139-010-9273-y | MR 2787288
[56] van de Bult, F.J., Rains, E.M.: Limits of multivariate elliptic beta integrals and related bilinear forms. http://arxiv.org/abs/1110.1460, arXiv:1110.1460.
[57] van de Bult, F.J., Rains, E.M.: Limits of multivariate elliptic hypergeometric biorthogonal functions. http://arxiv.org/abs/1110.1458, arXiv:1110.1458.
[58] van de Bult, F.J., Rains, E.M.: Limits of elliptic hypergeometric biorthogonal functions. J. Approx. Theory 193 (0) (2015), 128–163, http://dx.doi.org/http://dx.doi.org/10.1016/j.jat.2014.06.009, http://arxiv.org/abs/1110.1456, arXiv:1110.1456. DOI 10.1016/j.jat.2014.06.009 | MR 3324567
[59] Witten, E.: Constraints on supersymmetry breaking. Nuclear Phys. B 202 (1982), 253–316, http://dx.doi.org/10.1016/0550-3213(82)90071-2 DOI 10.1016/0550-3213(82)90071-2 | MR 0668987
[60] Yamazaki, M.: Four-dimensional superconformal index reloaded. Theoret. and Math. Phys. 174 (1) (2013), 154–166, http://dx.doi.org/10.1007/s11232-013-0012-6 DOI 10.1007/s11232-013-0012-6 | MR 3172959 | Zbl 1280.81103
[61] Zwiebel, B.I.: Charging the superconformal index. JHEP 1201 (116) (2012), 31 pp., http://dx.doi.org/10.1007/JHEP01(2012)116, http://arxiv.org/abs/1111.1773, arXiv:1111.1773 [hep-th]. DOI 10.1007/JHEP01(2012)116 | Zbl 1306.81135
Partner of
EuDML logo