[1] Banach, S.:
Sur les Operations dans les Ensembles Abstraits et leur Application aux Equations Integrales. Fundamenta Mathematicae 3 (1922), 133–181.
DOI 10.4064/fm-3-1-133-181
[5] Choudhury, B. S., Das, K. P., Bhandari, S. K.:
A fixed point theorem for Kannan type mappings in 2-Menger spaces using a control function. Bulletin of Mathematical Analysis and Applications 3 (2011), 141–148.
MR 2955353
[6] Choudhury, B. S., Das, K. P., Bhandari, S. K.: Fixed point theorem for mappings with cyclic contraction in Menger spaces. Int. J. Pure Appl. Sci. Technol. 4 (2011), 1–9.
[7] Choudhury, B. S., Das, K. P., Bhandari, S. K.:
A Generalized cyclic C-contraction priniple in Menger spaces using a control function. Int. J. Appl. Math. 24, 5 (2011), 663–673.
MR 2931524
[8] Choudhury, B. S., Das, K. P., Bhandari, S. K.:
A fixed point theorem in 2-Menger space using a control function. Bull. Cal. Math. Soc. 104, 1 (2012), 21–30.
MR 3088824
[9] Choudhury, B. S., Das, K. P., Bhandari, S. K.:
Two Ciric type probabilistic fixed point theorems for discontinuous mappings. International Electronic Journal of Pure and Applied Mathematics 5, 3 (2012), 111–126.
MR 3016126
[10] Choudhury, B. S., Das, K. P., Bhandari, S. K.:
Cyclic contraction result in 2-Menger space. Bull. Int. Math. Virtual Inst. 2 (2012), 223–234.
MR 3159041
[11] Choudhury, B. S., Das, K. P., Bhandari, S. K.: Generalized cyclic contraction in Menger spaces using a control function. Rev. Bull. Cal. Math. Soc. 20, 1 (2012), 35–42.
[12] Choudhury, B. S., Das, K. P., Bhandari, S. K.:
Cyclic contraction of Kannan type mappings in generalized Menger space using a control function. Azerbaijan Journal of Mathematics 2, 2 (2012), 43–55.
MR 2967294
[13] Choudhury, B. S., Das, K. P., Bhandari, S. K.:
Fixed points of p-cyclic Kannan type contractions in probabilistic spaces. J. Math. Comput. Sci. 2 (2012), 565–583.
MR 2929240
[14] Dutta, P. N., Choudhury, B. S., Das, K. P.:
Some fixed point results in Menger spaces using a control function. Surveys in Mathematics and its Applications 4 (2009), 41–52.
MR 2485791 |
Zbl 1180.54054
[18] Golet, I.: A fixed point theorems in probabilistic 2-metric spaces. Sem. Math. Phys. Inst. Polit. Timisoara (1988), 21–26.
[19] Hadžić, O.:
A fixed point theorem for multivalued mappings in 2-menger spaces. Univ. Novi Sad, Zb. Rad. Prirod., Mat. Fak., Ser. Mat. 24 (1994), 1–7.
MR 1413932 |
Zbl 0897.54036
[20] Hadžić, O., Pap, E.:
Fixed Point Theory in Probabilistic Metric Spaces. Mathematics and Its Applications 536, Springer Netherlands, New York–Heidelberg–Berlin, 2001.
MR 1896451
[21] Iseki, K.:
Fixed point theorems in 2-metric space. Math. Sem. Notes, Kobe Univ. 3 (1975), 133–136.
MR 0415596
[22] Khan, M. S.:
On the convergence of sequences of fixed points in 2-metric spaces. Indian J. Pure Appl. Math. 10 (1979), 1062–1067.
MR 0547888 |
Zbl 0417.54020
[25] Kirk, W. A., Srinivasan, P. S., Veeramani, P.:
Fixed points for mappings satisfying cyclical contractive conditions. Fixed Point Theorys 4 (2003), 79–89.
MR 2031823 |
Zbl 1052.54032
[28] Naidu, S. V. R., Prasad, J. R.:
Fixed point theorems in metric, 2-metric and normed linear spaces. Indian J. Pure Appl. Math 17 (1986), 602–612.
MR 0844195 |
Zbl 0584.54042
[29] Naidu, S. V. R., Prasad, J. R.:
Fixed point theorems in 2-metric spaces. Indian J. Pure Appl. Math 17 (1986), 974–993.
MR 0856334 |
Zbl 0592.54049
[33] Sastry, K. P. R., Babu, G. V. R.:
Some fixed point theorems by altering distances between the points. Indian J. Pure. Appl. Math. 30, 6 (1999), 641–647.
MR 1701042 |
Zbl 0938.47044
[34] Sastry, K. P. R., Naidu, S. V. R., Babu, G. V. R., Naidu, G. A.:
Generalisation of common fixed point theorems for weakly commuting maps by altering distances. Tamkang Journal of Mathematics 31, 3 (2000), 243–250.
MR 1778222
[35] Schweizer, B., Sklar, A.:
Probabilistic Metric Spaces. Elsevier, North-Holland, New York, 1983.
MR 0790314 |
Zbl 0546.60010
[36] Sehgal, V. M., Bharucha-Reid, A. T.:
Fixed point of contraction mappings on PM space. Math. Sys. Theory 6, 2 (1972), 97–100.
DOI 10.1007/BF01706080 |
MR 0310858
[37] Sharma, A. K.:
A note on fixed points in 2-metric spaces. Indian J. Pure Appl. Math. 11 (1980), 1580–1583.
MR 0617834 |
Zbl 0448.54049
[38] Chang, S.-S., Huang, N.-J.:
On generalized 2-metric spaces and probabilistic 2-metric spaces, with applications to fixed point theory. Math. Jap. 34, 6 (1989), 885–900.
MR 1025044
[40] Singh, S. L., Talwar, R., Zeng, W.-Z.:
Common fixed point theorems in 2-menger spaces and applications. Math. Student 63 (1994), 74–80.
MR 1292372 |
Zbl 0878.54040
[42] Zeng, W.-Z.:
Probabilistic 2-metric spaces. J. Math. Research Expo. 2 (1987), 241–245.
MR 0929343
[43] Wlodarczyk, K., Plebaniak, R., Banach, A.:
Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces. Nonlinear Analysis 70 (2009), 3332–3341.
DOI 10.1016/j.na.2008.04.037 |
MR 2503079 |
Zbl 1171.54311
[44] Wlodarczyk, K., Plebaniak, R., Obczyński, C.:
Convergence theorems, best approximation and best proximity for set-valued dynamic systems of relatively quasi-asymptotic contractions in cone uniform spaces. Nonlinear Analysis 72 (2010), 794–805.
DOI 10.1016/j.na.2009.07.024 |
MR 2579346 |
Zbl 1185.54020