[1] Apkarian, P., Gahinet, P.:
A linear matrix inequality approach to ${H}_{\infty}$ control. Int. J. Robust Nonlinear Control 4 (1994), 421-448.
DOI 10.1002/rnc.4590040403 |
MR 1286148
[2] Arzelier, D., Peaucelle, D., Sahli, S.: Robust static output feedback stabilization for polytopic uncertain systems. In: Robust Control Design, ROCOND, Milan 2003.
[3] Bachelier, O., Henrion, D., Pradin, B., Mehdi, D.:
Robust matrix root-clustering of a matrix in intersections or unions of subregions. SIAM J. Control Optim. 43 (2004), 3, 1078-1093.
DOI 10.1137/s0363012903432365 |
MR 2114390
[6] Boyd, S., Ghaoui, L. El, Féron, E., Balakrishnan, V.:
Linear matrix inequalities in system and control zheory. SIAM Studies in Applied Mathematics 15 (1994).
DOI 10.1137/1.9781611970777 |
MR 1284712
[7] Chesi, G., Garulli, A., Tesi, A., Vicino, A.:
Polynomially parameter-dependent Lyapunov functions for robust stability of polytopic systems: An LMI approach. IEEE Trans. Automat. Control 50 (2005), 3, 365-370.
DOI 10.1109/tac.2005.843848 |
MR 2123097
[8] Chilali, M., Gahinet, P.:
${H}_{\infty}$ design with pole placement constraints: An LMI approach. IEEE Trans. Automat. Control 41 (1996), 3, 358-367.
DOI 10.1109/9.486637 |
MR 1382985
[11] Dinh, M., Scorletti, G., Fromion, V., Magarotto, E.:
Parameter dependent {H}$_{\infty}$ control by finite dimensional LMI optimization: Application to trade-off dependent control. Int. J. Robust and Nonlinear Control 15 (2005), 383-406.
DOI 10.1002/rnc.994 |
MR 2139464 |
Zbl 1100.93016
[14] Ebihara, Y., Hagiwara, T.:
On the degree of polynomial parameter-dependent Lyapunov function for the robust stability of single parameter-dependent LTI systems: A counter-example to Barmish's conjecture. Automatica 42 (2006), 1599-1603.
DOI 10.1016/j.automatica.2006.04.011 |
MR 2246853
[16] Finsler, P.:
Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer Formen: Comment. Math. Helv. 9 (1937), 188-192.
DOI 10.1007/bf01258188 |
MR 1509554
[18] Graham, M. R, Oliveira, M. C. de:
Robust analysis with respect to real parameter uncertainty. In: Proc. 47th IEEE Conference on Decision and Control (CDC), Cancun 2008.
DOI 10.1109/cdc.2008.4739449
[20] Graham, M. R, Oliveira, M. C. de, Callafon, R. A.:
Frequency domain conditions via linear matrix inequalities. In: Proc. 46th IEEE Conference on Decision and Control, New Orleans 2007.
DOI 10.1109/cdc.2007.4434854
[25] Iwasaki, T., Hara, S.:
Generalized KYP lemma: Unified frequency domain inequalities with design applications. IEEE Trans. Automat. Control 50 (2005), 1, 41-59.
DOI 10.1109/tac.2004.840475 |
MR 2110808
[28] Lyapunov, A.:
Problème général de la stabilité du mouvement. Annales de la Faculté de Sciences de Toulouse 1907, Translated into French from the original Russian text, Kharkov 1892.
DOI 10.5802/afst.246
[29] Manceaux-Cumer, C., Chrétien, J.-P.:
Minimal LFT form of a spacecraft built up from two bodies. In: Proc. AIAA Guidance, Navigation, and Control Conference, Montréal 2001.
DOI 10.2514/6.2001-4350
[31] Peaucelle, D.:
Quadratic separation for uncertain descriptor system analysis, strict LMI conditions. In: Proc. 46th IEEE Conference on Decision and Control (CDC), New Orleans 2007.
DOI 10.1109/cdc.2007.4434238
[33] Peaucelle, D., Arzelier, D., Henrion, D., Gouaisbault, F.:
Quadratic separation for feedback connection of an uncertain matrix and an implicit linear transformation. Automatica 43 (2007), 796-804.
DOI 10.1016/j.automatica.2006.11.005 |
MR 2306727
[36] Sari, B., Bachelier, O., Mehdi, D.:
Improved robust $D_U$-stability measures via S-procedure. In: Proc. American Control Conference (ACC), Seattle 2008.
DOI 10.1109/acc.2008.4587253
[37] Scherer, C. W.:
A full block S-procedure with applications. In: Proc. 36th Conference on Decision Control (CDC), San Diego 1997.
DOI 10.1109/cdc.1997.657686
[39] Skelton, R. E., Iwasaki, T., Grigoriadis, K.: A Unified Approach to Linear Control Design. Taylor and Francis series in Systems and Control, 1997.
[41] Yakubovich, V. A.:
S-procedure in nonlinear control theory. Vestnik Leningrad Univ. 1 (1971), 62-77.
MR 0297429 |
Zbl 0232.93010