Previous |  Up |  Next

Article

Keywords:
LMI relaxations; robust analysis; parametric uncertainty
Summary:
This note proposes a quite general mathematical proposition which can be a starting point to prove many well-known results encountered while studying the theory of linear systems through matrix inequalities, including the S-procedure, the projection lemma and few others. Moreover, the problem of robustness with respect to several parameter uncertainties is revisited owing to this new theorem, leading to LMI (Linear Matrix Inequality)-based conditions for robust stability or performance analysis with respect to ILFR (Implicit Linear Fractional Representation)-based parametric uncertainty. These conditions, though conservative, are computationally very tractable and make a good compromise between conservatism and engineering applicability.
References:
[1] Apkarian, P., Gahinet, P.: A linear matrix inequality approach to ${H}_{\infty}$ control. Int. J. Robust Nonlinear Control 4 (1994), 421-448. DOI 10.1002/rnc.4590040403 | MR 1286148
[2] Arzelier, D., Peaucelle, D., Sahli, S.: Robust static output feedback stabilization for polytopic uncertain systems. In: Robust Control Design, ROCOND, Milan 2003.
[3] Bachelier, O., Henrion, D., Pradin, B., Mehdi, D.: Robust matrix root-clustering of a matrix in intersections or unions of subregions. SIAM J. Control Optim. 43 (2004), 3, 1078-1093. DOI 10.1137/s0363012903432365 | MR 2114390
[4] Bachelier, O., Mehdi, D.: Robust matrix root-clustering through extended KYP Lemma. SIAM J. Control Optim. 45 (2006), 1, 368-381. DOI 10.1137/s036301290444349x | MR 2225310
[5] Bosche, J., Bachelier, O., Mehdi, D.: An approach for robust matrix root-clustering analysis in a union of regions. IMA J. Math. Control Inform. 22 (2005), 227-239. DOI 10.1093/imamci/dni007 | MR 2160204 | Zbl 1108.93063
[6] Boyd, S., Ghaoui, L. El, Féron, E., Balakrishnan, V.: Linear matrix inequalities in system and control zheory. SIAM Studies in Applied Mathematics 15 (1994). DOI 10.1137/1.9781611970777 | MR 1284712
[7] Chesi, G., Garulli, A., Tesi, A., Vicino, A.: Polynomially parameter-dependent Lyapunov functions for robust stability of polytopic systems: An LMI approach. IEEE Trans. Automat. Control 50 (2005), 3, 365-370. DOI 10.1109/tac.2005.843848 | MR 2123097
[8] Chilali, M., Gahinet, P.: ${H}_{\infty}$ design with pole placement constraints: An LMI approach. IEEE Trans. Automat. Control 41 (1996), 3, 358-367. DOI 10.1109/9.486637 | MR 1382985
[9] Oliveira, M. C. de, Bernussou, J., Geromel, J. C.: A new discrete-time robust stability condition. Systems Control Lett. 37 (1999), 4, 261-265 DOI 10.1016/S0167-6911(99)00035-3 | MR 1751256 | Zbl 0948.93058
[10] Oliveira, M. C. de, Geromel, J. C., Bernussou, J.: Robust filtering of discrete-time linear systems with parameter dependent Lyapunov functions. SIAM J. Control Optim. 41 (2002), 3, 700-711. DOI 10.1137/s0363012999366308 | MR 1939867 | Zbl 1022.93048
[11] Dinh, M., Scorletti, G., Fromion, V., Magarotto, E.: Parameter dependent {H}$_{\infty}$ control by finite dimensional LMI optimization: Application to trade-off dependent control. Int. J. Robust and Nonlinear Control 15 (2005), 383-406. DOI 10.1002/rnc.994 | MR 2139464 | Zbl 1100.93016
[12] Ebihara, Y., Peaucelle, D., Arzelier, D.: S-variable Approach to LMI-based Robust Control. Communications and Control Engineering Series, Springer, London 2014. DOI 10.1007/978-1-4471-6606-1 | MR 3244313 | Zbl 1314.93005
[13] Ebihara, Y., Hagiwara, T.: A dilated LMI approach to robust performances analysis of linear time-invariant uncertain systems. Automatica 41 (2005), 11, 1933-1941. DOI 10.1016/j.automatica.2005.05.023 | MR 2168657
[14] Ebihara, Y., Hagiwara, T.: On the degree of polynomial parameter-dependent Lyapunov function for the robust stability of single parameter-dependent LTI systems: A counter-example to Barmish's conjecture. Automatica 42 (2006), 1599-1603. DOI 10.1016/j.automatica.2006.04.011 | MR 2246853
[15] Feng, Y., Yagoubi, M., Chevrel, P.: Dilated LMI characterizations for linear time-invariant singular systems. Int. J. Control 83 (2010), 11, 2276-2284. DOI 10.1080/00207179.2010.514947 | MR 2747292
[16] Finsler, P.: Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer Formen: Comment. Math. Helv. 9 (1937), 188-192. DOI 10.1007/bf01258188 | MR 1509554
[17] Geromel, J. C., Oliveira, M. C. de, Hsu, L.: LMI characterization of structural and robust stability. Linear Algebra Appl. 285 (1998), 69-80. DOI 10.1016/s0024-3795(98)10123-4 | MR 1653487 | Zbl 0949.93063
[18] Graham, M. R, Oliveira, M. C. de: Robust analysis with respect to real parameter uncertainty. In: Proc. 47th IEEE Conference on Decision and Control (CDC), Cancun 2008. DOI 10.1109/cdc.2008.4739449
[19] Graham, M. R., Oliveira, M. C. de: Linear matrix inequality tests for frequency domain inequalities with affine multipliers. Automatica 46 (2010), 897-901. DOI 10.1016/j.automatica.2010.02.009 | MR 2877163 | Zbl 1191.93106
[20] Graham, M. R, Oliveira, M. C. de, Callafon, R. A.: Frequency domain conditions via linear matrix inequalities. In: Proc. 46th IEEE Conference on Decision and Control, New Orleans 2007. DOI 10.1109/cdc.2007.4434854
[21] Graham, M. R., Oliveira, M. C. de, Callafon, R. A.: An alternative Kalman-Yakubovich-Popov lemma and some extensions. Automatica 45 (2009), 6, 1489-1496. DOI 10.1016/j.automatica.2009.02.006 | MR 2879454 | Zbl 1166.93007
[22] Gusev, S. V., Likhtarnikov, A. L.: Kalman-Popov-Yakubovich lemma and the S-procedure: A historical essay. Automation Remote Control 67 (2006), 11, 1768-1810. DOI 10.1134/s000511790611004x | MR 2275456 | Zbl 1195.93002
[23] Hecker, S., Varga, A.: Generalized LFT-based representation of parametric models. Europ. J. Control, 10 (2004), 4, 326-337. DOI 10.3166/ejc.10.326-337 | MR 2120424
[24] Hill, R. D.: Eigenvalue location using certain matrix functions and geometric curves. Linear Algebra Appl. 16 (1977), 83-91. DOI 10.1016/0024-3795(77)90022-2 | MR 0466177 | Zbl 0448.15009
[25] Iwasaki, T., Hara, S.: Generalized KYP lemma: Unified frequency domain inequalities with design applications. IEEE Trans. Automat. Control 50 (2005), 1, 41-59. DOI 10.1109/tac.2004.840475 | MR 2110808
[26] Iwasaki, T., Meinsma, G., Fu, M.: Generalized S-procedure and finite frequency KYP lemma. Math. Problems Engrg. 6 (2000), 305-320. DOI 10.1155/s1024123x00001368 | MR 2055916 | Zbl 1056.93596
[27] Lasserre, J.-B.: Moments, Positive Polynomials and Their Applications. Imperial College, 2009. DOI 10.1142/p665 | MR 2589247 | Zbl 1211.90007
[28] Lyapunov, A.: Problème général de la stabilité du mouvement. Annales de la Faculté de Sciences de Toulouse 1907, Translated into French from the original Russian text, Kharkov 1892. DOI 10.5802/afst.246
[29] Manceaux-Cumer, C., Chrétien, J.-P.: Minimal LFT form of a spacecraft built up from two bodies. In: Proc. AIAA Guidance, Navigation, and Control Conference, Montréal 2001. DOI 10.2514/6.2001-4350
[30] Ostrowski, A., Schneider, H.: Some theorems on the inertia of general matrices. J. Math. Anal. Appl. 4 (1962), 72-84. DOI 10.1016/0022-247x(62)90030-6 | MR 0142555 | Zbl 0112.01401
[31] Peaucelle, D.: Quadratic separation for uncertain descriptor system analysis, strict LMI conditions. In: Proc. 46th IEEE Conference on Decision and Control (CDC), New Orleans 2007. DOI 10.1109/cdc.2007.4434238
[32] Peaucelle, D., Arzelier, D., Bachelier, O., Bernussou, J.: A new robust D-stability condition for real convex polytopic uncertainty. Systems Control Lett. 40 (2000), 1, 21-30. DOI 10.1016/s0167-6911(99)00119-x | MR 1829071 | Zbl 0977.93067
[33] Peaucelle, D., Arzelier, D., Henrion, D., Gouaisbault, F.: Quadratic separation for feedback connection of an uncertain matrix and an implicit linear transformation. Automatica 43 (2007), 796-804. DOI 10.1016/j.automatica.2006.11.005 | MR 2306727
[34] Pipeleers, G., Demeulenaere, B., Swevers, J., Vandenberghe, L.: Extended LMI characterizations for stability and performance of linear systems. Systems Control Lett. 58 (2009), 7, 510-518. DOI 10.1016/j.sysconle.2009.03.001 | MR 2536426 | Zbl 1166.93014
[35] Rantzer, A.: On the Kalman-Yakubovich-Popov lemma. Systems Control Lett. 28 (1996), 7-10. DOI 10.1016/0167-6911(95)00063-1 | MR 1393670 | Zbl 0866.93052
[36] Sari, B., Bachelier, O., Mehdi, D.: Improved robust $D_U$-stability measures via S-procedure. In: Proc. American Control Conference (ACC), Seattle 2008. DOI 10.1109/acc.2008.4587253
[37] Scherer, C. W.: A full block S-procedure with applications. In: Proc. 36th Conference on Decision Control (CDC), San Diego 1997. DOI 10.1109/cdc.1997.657686
[38] Scherer, C. W.: LPV control and full block multipliers. Automatica 37 (2001), 361-375. DOI 10.1016/s0005-1098(00)00176-x | MR 1844000 | Zbl 0982.93060
[39] Skelton, R. E., Iwasaki, T., Grigoriadis, K.: A Unified Approach to Linear Control Design. Taylor and Francis series in Systems and Control, 1997.
[40] Stein, P.: Some general theorems on iterants. J. Res. National Bureau of Standards 48 (1952), 82-83. DOI 10.6028/jres.048.010 | MR 0047001
[41] Yakubovich, V. A.: S-procedure in nonlinear control theory. Vestnik Leningrad Univ. 1 (1971), 62-77. MR 0297429 | Zbl 0232.93010
Partner of
EuDML logo