[1] Barrio, R., Martinez, M. A., Serrano, S., Shilnikov, A.:
Macro- and micro-chaotic structures in the Hindmarsh-Rose model of bursting neurons. Chaos 24 (2014), 023128.
DOI 10.1063/1.4882171 |
MR 3403326
[2] Chalike, S. K., Lee, K. W., Singh, S. N.:
Synchronization of inferior olive neurons via $L_1$ adaptive feedback. Nonlinear Dynam. 78 (2014), 467-483.
DOI 10.1007/s11071-014-1454-6 |
MR 3266456
[3] Checco, P., Righero, M., Biey, M., Kocarev, L.:
Synchronization in networks of Hindmarsh-Rose neurons. IEEE Trans. Circuits Syst. II: Exp. Briefs 55 (2008), 1274-1278.
DOI 10.1109/tcsii.2008.2008057
[4] Ferrari, F. A. S., Viana, R. L., Lopesa, S. R., Stoop, R.:
Phase synchronization of coupled bursting neurons and the generalized Kuramoto model. Neural Netw. 66 (2015), 107-118.
DOI 10.1016/j.neunet.2015.03.003
[5] Hindmarsh, J. L., Rose, R. M.:
A mode of the nerve impulse using two first-order differential equations. Nature 296 (1982), 162-164.
DOI 10.1038/296162a0
[6] Holden, A. V., Fan, Y. S.:
From simple to simple bursting oscillatory behaviour via chaos in the Rose-Hindmarsh model for neuronal activity. Chaos Soliton Fract. 2 (1992), 221-236.
DOI 10.1016/0960-0779(92)90032-i |
Zbl 0766.92006
[7] Hosaka, R., Sakai, Y., Aihara, K.:
Strange responses to fluctuating inputs in the Hindmarsh-Rose neurons. Lect. Notes Comput. Sci. 5864 (2009), 401-408.
DOI 10.1007/978-3-642-10684-2_45
[9] Khalil, H. K.: Nonlinear Systems. Third edition. Prentice Hall, Upper Saddle River 2002.
[11] Li, H. Y., Hu, Y. A., Wang, R. Q.:
Adaptive finite-time synchronization of cross-strict feedback hyperchaotic systems with parameter uncertainties. Kybernetika 49 (2013), 554-567.
MR 3117914
[13] Liang, H., Wang, Z., Yue, Z., Lu, R.:
Generalized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication. Kybernetika 48 (2012), 190-205.
MR 2954320 |
Zbl 1256.93084
[15] Lü, J., Zhou, T., Chen, G., Yang, X.:
Generating chaos with a switching piecewise-linear controller. Chaos 12 (2002), 344-349.
DOI 10.1063/1.1478079
[16] Ma, M. H., Zhang, H., Cai, J. P., Zhou, J.:
Impulsive practical synchronization of n-dimensional nonautonomous systems with parameter mismatch. Kybernetika 49 (2013), 539-553.
MR 3117913 |
Zbl 1274.70039
[17] Meyer, T., Walker, C., Cho, R. Y., Olson, C. R.:
Image familiarization sharpens response dynamics of neurons in inferotemporal cortex. Nat. Neurosci. 17 (2014), 1388-1394.
DOI 10.1038/nn.3794
[21] Sedov, A. S., Medvednik, R. S., Raeva, S. N.:
Significance of local synchronization and oscillatory processes of thalamic neurons in goal-directed human behavior. Hum. Physiol. 40 (2014), 1-7.
DOI 10.1134/s0362119714010137
[22] Shen, C. W., Yu, S. M., Lu, J. H., Chen, G. R.:
A Systematic methodology for constructing hyperchaotic systems with multiple positive Lyapunov exponents and circuit implementation. IEEE Trans. Circuits Syst. I: Reg. Papers 61 (2014), 854-864.
DOI 10.1109/tcsi.2013.2283994
[23] Shen, C. W., Yu, S. M., Lu, J. H., Chen, G. R.:
Designing hyperchaotic systems with any desired number of positive lyapunov exponents via a simple model. IEEE Trans. Circuits Syst. I: Reg. Papers 61 (2014), 2380-2389.
DOI 10.1109/tcsi.2014.2304655
[25] Wang, J. G., Cai, J. P., Ma, M. H., Feng, J. C.:
Synchronization with error bound of non-identical forced oscillators. Kybernetika 44 (2008), 534-545.
MR 2459071 |
Zbl 1173.70009
[27] Wang, C. N., Ma, J., Tang, J., Li, Y. L.:
Instability and death of spiral wave in a two-dimensional array of Hindmarsh-Rose neurons. Commun. Theor. Phys. 53 (2010), 382-388.
DOI 10.1088/0253-6102/53/2/32
[28] Wei, Z., Wang, Z.:
Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium. Kybernetika 49 (2013), 359-374.
MR 3085401 |
Zbl 1276.34043
[29] Wu, X. F., Zhao, Y., Wang, M. H.:
Global synchronization of chaotic Lur'e systems via replacing variables control. Kybernetika 44 (2008), 571-584.
MR 2459074 |
Zbl 1175.37040