Previous |  Up |  Next

Article

Keywords:
aggregation function; OWA operator; orness measure
Summary:
We have modified the axiomatic system of orness measures, originally introduced by Kishor in 2014, keeping altogether four axioms. By proposing a fuzzy orness measure based on the inner product of lattice operations, we compare our orness measure with Yager's one which is based on the inner product of arithmetic operations. We prove that fuzzy orness measure satisfies the newly proposed four axioms and propose a method to determine OWA operator with given fuzzy orness degree.
References:
[1] Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5 (1953), 131-295. DOI 10.5802/aif.53 | MR 0080760 | Zbl 0679.01011
[2] Dujmović, J. J.: LSP method and its use for evaluation of Java IDEs. Int. J. Approx. Reasoning 41 (2006), 3-22. DOI 10.1016/j.ijar.2005.06.006 | Zbl 1092.68553
[3] Dujmović, J. J.: Continuous preference logic for system evaluation. IEEE Trans. Fuzzy Syst. 15 (2007), 6, 1082-1099. DOI 10.1109/tfuzz.2007.902041
[4] Dujmović, J. J.: Andness and orness as a mean of overall importance. In: IEEE International Conference on Fuzzy Systems, FUZZ 2012, Brisbane 2012, pp. 1-6. DOI 10.1109/fuzz-ieee.2012.6250777
[5] Filev, D., Yager, R. R.: On the issue of obtaining OWA operator weights. Fuzzy Sets and Systems 94 (1998), 157-169. DOI 10.1016/s0165-0114(96)00254-0 | MR 1614114
[6] Grabisch, M., Marichal, J. L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge 2009. DOI 10.1017/cbo9781139644150 | MR 2538324 | Zbl 1206.68299
[7] Hesamian, G., Taheri, S. M.: Fuzzy empirical distribution function: Properties and application. Kybernetika, 49 (2013), 6, 962-982. MR 3182651
[8] Jin, L.: Some properties and representation methods for Ordered Weighted Averaging operators. Fuzzy Sets and Systems 261 (2015), 60-86. DOI 10.1016/j.fss.2014.04.019 | MR 3291486
[9] Kishor, A., Singh, A. K., Pal, N. R.: Orness measure of OWA operators: a new approach. IEEE Trans. Fuzzy Syst. 22 (2014), 4, 1039-1045. DOI 10.1109/tfuzz.2013.2282299
[10] Kolesárová, A., Mesiar, R., Rückschlossová, T.: Power stable aggregation functions. Fuzzy Sets and Systems 240 (2014), 39-50. DOI 10.1016/j.fss.2013.05.005 | MR 3167511 | Zbl 1315.68238
[11] Liu, X. W.: On the properties of equidifferent OWA operator. Int. J. Approx. Reasoning 43 (2006), 90-107. DOI 10.1016/j.ijar.2005.11.003 | MR 2252608 | Zbl 1102.68130
[12] Liu, X. W.: An orness measure for quasi-arithmetic means. IEEE Trans. Fuzzy Syst. 16 (2006), 6, 837-848. DOI 10.1109/tfuzz.2006.879990
[13] Liu, X. W.: Models to determine parameterized ordered weighted averaging operators using optimization criteria. Inf. Sci. 190 (2012), 27-55. DOI 10.1016/j.ins.2011.12.007 | MR 2881829
[14] Liu, X. W., Chen, L. H.: On the properties of parametric geometric OWA operator. Int. J. Approx. Reasoning 35 (2004), 163-178. DOI 10.1016/j.ijar.2003.09.001 | MR 2035920 | Zbl 1068.68147
[15] Liu, X. W., Han, S. L.: Orness and parameterized RIM quantifier aggregation with OWA operators: A summary. Int. J. Approx. Reasoning 48 (2008), 77-97. DOI 10.1016/j.ijar.2007.05.006 | MR 2420662 | Zbl 1184.68516
[16] Mareš, M., Mesiar, R.: Information in vague data sources. Kybernetika 49 (2013), 3, 433-445. MR 3085407
[17] Mesiar, R., Li, J., Pap, E.: Discrete pseudo-integrals. Int. J. Approx. Reasoning 54 (2013), 357-364. DOI 10.1016/j.ijar.2012.07.008 | MR 3021836 | Zbl 1267.28018
[18] Mesiar, R., Li, J., Pap, E.: Superdecomposition integrals. Fuzzy Sets Syst. 259 (2015), 3-11. DOI 10.1016/j.fss.2014.05.003 | MR 3278740
[19] Mesiar, R., Stupňanová, A.: Decomposition integrals. Int. J. Approx. Reason. 54 (2013), 1252-1259. DOI 10.1016/j.ijar.2013.02.001 | MR 3081310 | Zbl 1316.28015
[20] Sugeno, M.: Theory of Fuzzy Integrals and its Applications. PhD. Thesis. Tokyo Institute of Technology 1974.
[21] Torra, V.: The weighted OWA operator. Int. J. Intell. Syst. 12 (1997), 153-166. DOI 10.1002/(sici)1098-111x(199702)12:2<153::aid-int3>3.0.co;2-p | Zbl 0867.68089
[22] Troiano, L., Yager, R. R.: Recursive and iterative OWA operators. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 13 (2005), 6, 579-599. DOI 10.1142/s0218488505003680 | MR 2198351 | Zbl 1085.68172
[23] Wallmann, C., Kleiter, G. D.: Degradation in probability logic: When more information leads to less precise conclusions. Kybernetika 50 (2014), 2, 268-283. DOI 10.14736/kyb-2014-2-0268 | MR 3216994 | Zbl 1296.03018
[24] Xu, Z. S.: An overview of methods for determining OWA weights. Int. J. Intell. Syst. 20 (2005), 8, 843-865. DOI 10.1002/int.20097 | Zbl 1073.90020
[25] Yager, R. R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. 18 (1) (1988), 183-190. DOI 10.1109/21.87068 | MR 0931863
[26] Yager, R. R.: Families of OWA operators. Fuzzy Sets and Systems 59 (1993), 125-143. DOI 10.1016/0165-0114(93)90194-m | MR 1253838 | Zbl 0790.94004
[27] Yager, R. R.: Quantifier guided aggregation using OWA operators. Int. J. Intell. Syst. 11 (1996), 49-73. DOI 10.1002/(sici)1098-111x(199601)11:1<49::aid-int3>3.0.co;2-z
[28] Yager, R. R.: Induced aggregation operators. Fuzzy Sets and Systems 137 (2003), 59-69. DOI 10.1016/s0165-0114(02)00432-3 | MR 1992698 | Zbl 1056.68146
[29] Yager, R. R.: OWA Aggregation Over a Continuous Interval Argument With Applications to Decision Making. IEEE Trans. Syst. Man Cybern. Part B 34 (2004), 1952-1963. DOI 10.1109/tsmcb.2004.831154
[30] Yager, R. R.: Centered OWA operators. Soft Computing 11 (2007), 631-639. DOI 10.1007/s00500-006-0125-z | Zbl 1113.68106
[31] Yager, R. R.: Time series smoothing and OWA aggregation. IEEE Trans. Fuzzy Syst. 16 (4) (2008), 994-1007. DOI 10.1109/tfuzz.2008.917299
[32] Yager, R. R.: Norms induced from OWA operators. IEEE Trans. Fuzzy Syst. 18 (2010), 1, 57-66. DOI 10.1109/tfuzz.2009.2035812 | MR 0739426
[33] Yager, R. R.: Probabilistically weighted OWA aggregation. IEEE Trans. Fuzzy Syst. 22 (2014), 46-56. DOI 10.1109/tfuzz.2013.2245899
[34] Yager, R. R., Filev, D. P.: Parameterized and-like and or-like OWA operators. Int. J. Gen. Syst. 22 (1994), 297-316. DOI 10.1080/03081079408935212
[35] Yager, R. R., Filev, D. P.: Operations for granular computing: mixing words and numbers. In: Fuzzy Systems Proceedings IEEE World Congress on Computational Intelligence, Anchorage 1998, pp. 123-128. DOI 10.1109/fuzzy.1998.687470
[36] Yager, R. R., Filev, D. P.: Induced ordered weighted averaging operators. IEEE Trans. Syst. Man Cybernet. 29 (1999), 141-150. DOI 10.1109/3477.752789
[37] Yager, R. R., Kacprzyk, J., Beliakov, G.: Recent Developments on the Ordered Weighted Averaging Operators: Theory and Practice. Springer-Verlag, Berlin 2011. DOI 10.1007/978-3-642-17910-5 | MR 2757526
Partner of
EuDML logo